Evaluation of the JCOP Configuration Database tool

By Lana Abadie, LHCb Computing Online, 11/11/04
Introduction

The LHCb configuration database is an Oracle database which contains static and dynamic device properties, connectivity between devices and the device hierarchy. It consists of two kinds of tables:
· JCOP tables which contain static and dynamic device properties. To save and load information in these tables, we are using the JCOP Configuration Database tool.
· LHCb specific tables describe connectivity between devices, device hierarchy and other properties not covered by the JCOP tool.
This evaluation provides feedback on extending the tool with generic functionalities which may be useful for LHCb and other experiments.

Test conditions

All the tests have been implemented on Windows XP machines which have an access to the CERN network.

We are currently using a “not official release” v.1 of the configuration database tool.

Laura Del Cano gave us the most recent version (mid April 2004) of 3 scripts
 (fwConfigurationDBAccess.ctl, fwConfigurationDBGeneral.ctl and fwConfigurationDBGeneralDBaccess.ctl) she has written. The main modifications reside in the way information about devices and recipes is stored. The new code is simpler and more efficient.
To run properly the tool, we updated the scripts in the fwConfigurationDBOperation.pnl and the fwConfigurationDB.pnl.
Getting connecting to the database
First we have to create an ODBC driver “Oracle in OraHome9i” because we are using Oracle version 9i.

Then we specify the name of the database, the login and the password through the fwConfigurationDBRootSetup panel: this information is stored in the _FwDatabase datapoint.
The four following tables have been created by the JCOP tool in the LHCb configuration database:
· FW_DEVICES and FW_DEVICE_PROPERTIES tables store devices and static device properties

· FW_RECIPES and FW_RECIPE_PROPERTIES tables store dynamic devices properties as recipes.
Basically, we can say that getting connected to the database was rather easy and well explained in the installation guide of the tool.
Inserting devices.
Test details:
1. Create a PVSS project conforming to the framework guidelines.
2. Type in manually the datapoint attributes we want to insert in the database, in the field properties.dpes
3. Referring to the Configuration Database Tool User and Development Guide, fill properly the entries of the fwConfigurationDBOperation.pnl which is used to insert the devices into the LHCb configuration database.
Comments
We give some suggestions that can improve the insertion of devices:
· It would be really appreciated it that step 2 is automatically performed via a panel.
This panel has to list all the datapoint types of the current PVSS project so that the user just ticks the ones he needs to save into the database. Then the submit button panel triggers a script which creates the datapoints and lists all the datapoint attributes in the field properties.dpes.

· Device mass insertion would make step 3 faster: it can be annoying for a user to insert all the datapoints of a given type. So it will be helpful and time-saving to develop new functionalities to save into the database loads of datapoints of a similar type. (or from a tree node down)
Save and load recipes

Test details:
Dynamic properties of devices have been saved as recipes into the database. The details are as follows:
· Save recipes via the CDB operation panel. This operation is not convenient when saving a same recipe for all the datapoints of a given type.

· Load recipes via the CDB operation panel. The loading functionality works properly but in our case we couldn’t always use it. Sometimes we just want to load a set of the recipe properties into the related datapoint and leave unchanged the value of the other datapoint attributes.
Comments
We give some suggestions that can improve the saving and loading recipes functionalities.
· Recipe per device type : allow the user to save a recipe for a given device type (and not only for a datapoint)
· Recipe mass insertion: allow the user to save a recipe for N devices of the same type.
The fwConfigurationDBOperation.pnl has to ask the user to select all the datapoints which are related to the recipe which must be saved.
· Recipe for a subset of device properties: allow the user to save some properties of the datapoint as a recipe. This option would give more flexibility to the user.
· Load a recipe into any datapoint: allow the user to load a recipe into any datapoint, even if this recipe hasn’t be saved for this datapoint.
· A recipeID column in the fw_recipes table would be helpful to identify a recipe: it would avoid repeating each time recipe_version, device_dpname when referring to a recipe. Moreover in both cases, we will have to query the fw_recipes table for the related recipe_tag because it’s more meaningful for the user. So queries will be much faster with a recipeID.

· It would be really convenient if the user could delete and update a recipe: it would avoid having useless and outdated data in the database.

Next release
Besides the previous requirements, extending the tool to the FSM view would really be appreciated.
So we need – via PVSS panels – to save the following information:

· The FSM tree structure as it describes in the _FwTreeNode datapoint.
· For each node in the FSM tree,
· the node name (as it is written in the _FwTreeNode)

· the unit (control or device)
· The parent node
· Its place in the tree (root, leave, middle)

· Fsm_type of the node
· The datapoint name related to this node

· The alias name of this node as it is called in the FSM tree.
· For each FSM type:

· FSM type name

· States

· Actions by specifying the initial state and final state.
· All the scripts related to these actions (located in the scripts/lib)
· The PVSS project name, the dim_dns_node and the version number to identify properly the FSM_tree.
We also need – via PVSS panels – to load FSM trees and the scripts related to the tree if necessary.

·
·
·
Conclusion

This tool has avoided us building all the panels and the scripts to save and load devices and recipes into the LHCb configuration database. All the functionalities we used were working properly but slowly.

The recurrent remark was to enable mass insertion for devices and recipes.

