Conclusions

Conclusions

This thesis describes the methodology applied to build an autonomic LHCb ECS with a focus on the experiment configuration.
There are often changes in the technology used to build the LHCb experiment. This thesis has described the LHCb experiment as expected to be built in August, 2006.
Due to the complexity introduced by the scale of the experiment with several hundred thousand of electronics modules to configure in different ways, an autonomic architecture was required by the Experiment Control System. The software architecture which has been implemented to handle the configuration is a 3-Tier architecture. It consists of a database layer (CIC DB and PL/SQL applications), an object layer (Two Perl scripts, CIC_DB_lib and its two bindings and the PVSS library for recipes) and the GUI layer composed of CDBVis and PVSS panels.
The CIC DB is a relational database, implemented using Oracle technology. It contains the different recipes of devices, the connectivity between devices for the whole experiment and inventory/history information of a device.To build the schema, we have first identified the different groups of users of the CIC DB. For each group, their needs in terms of configuration, inventory/history and connectivity have been defined.

Based on these use cases, we have proposed a generic model for connectivity and inventory/history. The main advantage of a generic schema is an easier management of the database. Despite the complex environment (many devices with different technologies and different types of topologies), the table schema is rather simple. It is readable and easy to extend. It can also be used by other experiments. ITER have expressed an interest in our design. The inventory/history use case consists of providing information about the history of a device (its different statuses over years) and also the current statuses of devices (spare devices, broken devices, devices in use, etc.). It introduces the concept of duality between hardware and functional devices. In other words, a functional device can be viewed as an entity which fulfills specific tasks whereas a hardware device is the physical equipment. A functional device is occupied by a hardware device. Both hardware and functional devices have a status and a history. The possible statuses of a hardware device are different from the functional device. A hardware device can have status “DESTROYED” whereas for functional devices this status does not make sense. Diagrams which represent the possible transitions from one status to another one have been drawn. For each transition, we have specified the different steps which need to be performed to make the change of status coherent and consistent. All these operations are done automatically.

The association between a device and a subsystem is an N:M relationship (a device can be part of N subsystems and a subsystem can contain M devices). For performance reasons, we have modeled the standard N:M relationship with a new representation based on prime numbers. To model an N:M relationship in the standard way, a new table must be created containing the relations. The method presented in this thesis avoids creating a new table by attributing a prime number as a unique identifier to the entity with the least number of distinct values and adding an attribute (integer) to the other one. This attribute corresponds to the product of prime numbers of the possible associations. The algorithm works because the decomposition of a number in terms of its primes is unique. This application can be applied to any other N:M relationship such as STUDENT/COURSES.

To allow for easier network management, we have developed routingtable_pck, a PL/SQL package which generates routing and destination tables using connectivity information. The concepts of host and intermediate nodes have been defined. The main idea of the algorithm is to search for paths with some properties depending on whether it is used for a destination or a routing table. A path is a sequence of links. A routing path is a special path which starts with an intermediate node (switch) and ends at a host node (PCs). A destination path is a special path which ends at a host node (PCs). The algorithm has been successfully tested for different types of topologies. It does not generate looped paths (cycles). The routingtable_pck can be used in other fields which require the configuration of networks such as private companies or electrical facilities. This algorithm is used to generate the DHCP config file automatically, by creating the destination table of the given DHCP server. The formatting into specific terms used in the DHCP protocol is done with XML and XSLT. The method to create the DHCP config file is also generic enough to be applied in any other industrial context as it can be adapted for any given connectivity by the use of enabling/disabling a hardware equipment which needs an IP address.

Based on the same algorithm, we have extended it to get detailed paths between devices. It is used to compute the values of configurable device parameters or to check that the devices are properly connected.

Other PL/SQL codes have been implemented to avoid embedding long SQL statements.
The CIC DB and PL/SQL applications have been implemented to allow flexibility and consistency. They constitute an essential aspect in implementing an autonomics architecture.
The other aspect was to build the object layer also according to the autonomics principles. CIC_DB_lib is a C-library which provides a set of functions to interact with the CIC DB. It has been built using an API which lists the different queries. With CIC_DB_lib, the user does not have to type any SQL queries or to have any knowledge of the CIC DB structure. The CIC_DB_lib has two bindings Python and PVSS built using respectively BOOST and GEH. The CIC_DB_lib provides cache mechanism which allows bulk collect insertion for performance reasons and automatic updates when possible. CIC_DB_lib and its two extensions have been tested to verify that the functions were operational and free of bugs (it includes memory leaks). Tests have been done to check that the functions were behaving correctly in case of a human error such as mistyping or inserting inconsistent information. The functions also try to minimize the human intervention by anticipating the reaction of the system in case this type of input is given. It was very useful for the inventory/history information which requires updating the data in a coherent manner.
Besides CIC_DB_lib, two Perl scripts have been built to automate the creation of the DHCP and DNS config files. It avoids mapping thousands of IP addresses with their corresponding host names and to make the association IP, MAC address and filename for a host name manually.

A PVSS library for recipes has been implemented by the CERN PVSS Support group. Here also, autonomics features have been applied by providing recipe template for electronics modules which are either commercial or widely used at the LHC. It avoids having errors in defining the configuration.
On top of the object layer, there is the GUI layer which displays the information to the users. PVSS panels have been implemented using the PVSS extension of CIC_DB_lib and the PVSS library for recipes. It allows configuring electronics modules, retrieving a certain recipe and applying it to the equipment. There is also CDBVis, a Python tool which allows users to navigate through the CIC DB. It is based on the Python extension of CIC_DB_lib. It also permits to insert the connectivity of a system. CDBVis is a very useful tool as users can check that the connectivity has been properly inserted. In conjunction with the ECS, it can be used for fault detection. Here also the user interfaces have been designed according to the autonomics principles.
This project is used and will continue to be used in LHCb. In the future, table partitioning may be required to keep a good performance depending on the amount of data inserted.

In the future, the table schema can be extended with new parameters as the detector can evolve with years. More precise performance studies on the C-library implementation can be done. One possible extension is the history table. One can implement a table which contains the different mistakes which usually happen and associating them with a priority. Then a set of actions can be taken by the FSM according to the given priority. It also contributes in improving the autonomics architecture of the ECS, especially by improving its self-adaptability.

The ECS can integrate some more autonomics tools in the future, once the detector fully operational. For instance, before starting an experiment, a PVSS panel based on DIM and on the CIC_DB_lib to verify that the connectivity stored in the CIC_DB is complete, i.e. there is no link missing. There is a need to implement some protocols which enable to get the information of a board such as it serial number, MAC and IP addresses and also to which devices it is connected to. It can be very useful to check that the connectivity is complete.
Another subject possibility is to study the use of parallelism. In the current implementation, the CIC DB will be installed in an Oracle RAC (with 3 nodes). The controls PCs (less than one hundred) will load the required information from the CIC DB.

One can think to have smaller DB servers (slaves) which contain all the information (configuration, history/inventory, connectivity) related to a subsystem. They are replicated using Oracle Replication from the CIC DB master. The controls PCs will load the information from their respective DB slave server. Performance will be surely improved as queries will be performed against smaller tables and concurrent queries will be reduced.

Another possible extension of this project is to apply it in the context of tsunamis, earthquakes and the Grid. One can imagine a distributed database which contains all the characteristics of tsunamis, earthquakes, and any other natural catastrophes by regions of the world. It is similar to configuration information. It can also contain history information of a region, where the different natural damages occurred. It should also contain information on which towns or other regions can be affected if a given region is hit by a given catastrophe. This connectivity information could be used to automatically send alerts to regions which can be affected if this type of catastrophe happens in this part of the world.
