

General introduction

General introduction
The configuration of large physics experiments
The topic of this thesis is the use of autonomics in the configuration of a large physics experiment such as LHCb.
The LHCb (Large Hadron Collider beauty) experiment is located at CERN (the European Laboratory for Particle Physics) [1]. It is one of the four experiments at the LHC (Large Hadron Collider) [2].LHCb is an international collaboration containing around 500 physicists from 50 participating institutes.
The objective of LHCb is to study CP violation on B mesons [3], a necessary condition for explaining the dominance of matter over antimatter after the Big-Bang. Collisions between two circulating beams of protons will generate particles that will produce signals in the sensors of the LHCb detector.
The LHCb detector is a complicated collection of a large number (500,000) of devices. These devices fulfil many different tasks and span a vast range of technologies. They range from particle detection and identification to signal processing and data handling.
In this thesis we are mainly interested in the configuration of electronics components. The configuration problem consists of configuring of the components such that they operate correctly individually and together.
The Experiment Control System
The configuration of the experiment is the responsibility of the Experiment Control System (ECS) [4]. The ECS needs:

· to know the information required to configure the experiment

· to be able to communicate with the different types of hardware and software,
· to verify whether the experiment has been configured properly and is in a correct state for taking data.
Configuring an experiment consists of settings the registers of electronics modules, downloading the right FPGA code [5], configuring software processes that are run on the data processing farm [6]. The configuration data consists of all the parameters and their values to be applied to hardware and software. The amount of configurable data depends on the type of the device. It can go from a few bytes to a few MB. It can consist of settings a few registers for a mode to a few thousands of registers.
The links between the components have an influence on the configuration. There are millions of links. Each subsystem (subdetector) has its own connectivity topology. The connectivity must be described and is part of the configuration.

For instance, the TFC (Timing and Fast Control) [4] system which is responsible for the synchronization between detector components, will distribute the clock to the active electronics modules. The connectivity is required to determine to which electronics module the clock should be forwarded, and which path to take when doing so. The DAQ (Data Acquisition) system [4] is a Gigabit network with around one hundred of routers. The DHCP [7] and DNS [8] servers in this network need to be configured. Routing tables and DHCP config files have to be made. Certain electronics modules [9] contain lookup tables (similar to destination tables) which need to be made dynamically and downloaded. These tables depend on the connectivity.
It also helps the ECS in designing an adaptive architecture in case of failures of modules. Using the connectivity, it can derive the whole branch of devices to be isolated further to the failure of such a module and makes the decision to go on or not with the data taking.
The granularity of the connectivity is important. For instance, there is a subsystem where tracking data is very important and if data is not properly transferred, the subsystem group need to know not only which device fails but which component(s) nested in which motherboard is(are) faulty.
It is expected that the LHCb detector will take data over a period of around 10-15 years. This timescale puts important constraints on the configurability of the equipment. It is clear that on this timescale some equipment will fail and will need to be replaced. The huge amount of hardware in the experiment requires an automatic, reliable and reproducible system that can be used by the ECS to configure and manage the equipment.
Autonomics [10]

HEP experiments become more and more complex in terms of technologies and number of items. Human errors, hardware or software failures are bound to happen. The ECS should be able to detect them and to react accordingly especially in the case where an error has not been predicted. Anticipating everything is not always possible. For instance, the data taking should go on if one sensor is badly configured or it should stop only if there are more than M sensors not correctly set. The value of M will certainly depend on the module type as a bad configuration of a sensor has not the same impact as a router wrongly configured. The experiment should then be adaptive. But also it requires knowing which modules are not properly configured and where they are located. Searching for a sensor among hundreds of thousands is a painful task if there is no mean to locate the faulty equipment.
Besides, budget and manpower are limited. It implies that the architecture should be as smart and self-managed as possible.
Autonomic tools consist of set of self-organising and dimensioning software.
Implementing autonomic tools is very useful and starts to be used in HEP experiments and LHCb is among them, especially in the Grid (data management). It allows reducing the human intervention (and consequently human errors). It enables the ECS to better configure and monitor the experiment. The ECS architecture is more robust and more reliable.
The ECS software architecture and its constraints
LHCb has an integrated ECS, that is, a unique and single control system for the whole experiment. Usually, HEP experiments are designed with two separate control system, one for the equipment which participates in the data taking (sensors, switches, routers, PCs, electronics board, etc.) and another one for the equipment which fuel the first group such as power supplies, High and Low Voltage, gas and cooling system. The second group consists of mainly commercial products and controlling them is slower (it is usually called the Slow Control system). The choice of an integrated ECS has pros and cons. It forces the experiment to follow certain guidelines but on the other hand the maintenance of the software is easier as they obey the same rules.

The ECS uses an industrial SCADA (Supervisory Control And Data Acquisition) system [11], called PVSS [12]. A SCADA system is a central system used to supervise a site or a process such as chemical, electrical processes which can execute logical processes without the master computer. As described above it is of crucial importance for the ECS to be able to access information related to connectivity, configuration and history/inventory of devices. One of the tools created as part of this thesis is the CIC (Configuration Inventory Connectivity) DB, which is an Oracle database. In addition a set of smart and adaptive tools were created which allow interactions with the database.
The main constraints on the design of this database are:
· use of a single database which will contain information about configuration, connectivity and history/inventory and which should cater for all the subsystems. It implies an unique and generic database schema;
· the representation of the behaviour (state and actions) of the experiment should follow guidelines. If a subsystem A is done with its configuration, it should have the same state (such as PROPERLY_CONFIGURED) as a subsystem B which is also already configured. Otherwise there will be a problem of communication.
· all the devices will be configured, monitored via PVSS. PVSS contains device drivers to allow communicating with the different types of equipment. Thus the CIC DB needs to have an interface for PVSS.
Objectives of the thesis
The main objective of this thesis is to provide the ECS with autonomic software tools which guarantee:
· a configuration of the all the devices, whatever the type and whatever the settings needed, within one minute. It includes different types of configuration according to the physics status. It should be thus flexible.
· a fault detection of devices with their location. It also aims at updating the configuration modules which are affected (such as routing tables of routers or look-up tables for instance).
· equipment management in a consistent and robust way as the detector has to be maintained for 10-15 years.

 Contribution of the thesis
Methodology
I have applied the following methodology to determine what information is need by the ECS to configure the LHCb experiment properly and to design and implement the software architecture.
· Assimilating the LHCb environment with its different subsystems was one of the essential aspects. It implies understanding the jargon of the HEP world.
· First I had to identify the different groups of users. Then for each group I had to collect the requirements and use cases of the project. I had to schedule at least one meeting with each subsystem (there are 8, TFC and DAQ included) to understand what kind of information they need to configure their subsystem. Sometimes it was not really clear since the electronics modules of a given subsystem were not yet fully operational. So there was a problem of time schedule. Also I got some contradictory use cases. In that case, I went to see my project leader and exposed him the problem.
I contributed actively in the organisation of the CIC DB workshop [13]. I had prepared a questionnaire [14] to identify their expectations.

· I had designed the CIC DB schema using the list of use cases and the ERM [15]. I had collated the use cases and I had made several presentations of my work during Online group meetings and LHCb week meeting (the whole LHCb collaboration).

· I had implemented a set of autonomic tools which requires no SQL [16] typing and allows a consistent and robust manipulation of data stored in the CIC DB. I had also written the documentation of the code so that people can use it. I also helped and gave them some advices on how to use them and integrate them in their application. It was similar to a tutorial. I also wrote a C-template to insert the connectivity of a subsystem.
· Finally during the release of the different tools, I could verify if my tools and my table schema were corresponding to the needs, otherwise the users provided me with feedback. And I improved functionalities.
Software architecture

The software architecture I came up with is a 3-Tier Architecture composed of the three following layers:
· Database layer. It consists of the generic and relational CIC DB schema (with the indexes and the constraints) and a set of PL/SQL [17] routines. PL/SQL is very convenient to build complex SQL queries. A PL/SQL package routingtable_pck has been built to generate and update routing and destination tables. I have also implemented a set of PL/SQL functions for bookkeeping purposes.
· Object layer. It consists of a C-library (CIC_DB_lib) which provides a set of functions to manipulate the data (inserting, updating, deleting and querying) in a consistent manner. It uses OCI (Oracle Call Interface) [18] as DB interface. OCI and C are widely used in LHCb Online environment. Part of the functions embeds PL/SQL codes. A lot of checks have been integrating to preserve data integrity in case of human error such as mistyping or incoherent data such as a port of device connected twice. Two bindings have been implemented on top of the library, one in Python (also commonly used in LHCb group) using Boost [19] and one in PVSS (using GEH [20], Generic External Handler) so that the ECS can interact with the CIC DB. There are also two Perl scripts, one which creates the DHCP config file and another one which creates the DNS files. These Perl scripts can be embedded in C applications in combination with CIC_DB_lib, if needed.
· GUI (Graphical User Interface) layer. It covers all the PVSS panels which have been implemented by users to configure the devices and are using the PVSS CIC_DB_lib binding. There is also CDBVis, a Python tool based on the Python CIC_DB_lib binding to navigate through the CIC_DB and allow fault detection.
Fault detection and verification of correctness

Another essential aspect was to make sure that the data stored in the CIC DB was complete and correct. It has been achieved in the different layers of the architecture.

· Database constraints and triggers have been defined to ensure coherency in the update, insertion and deletion of information. For instance, a device cannot be inserted twice. PL/SQL codes are one of the essential components to ensure consistency of the information. If a port of a switch fails, the status of the link is updated automatically and paths going through this port are disabled;
· Check of input parameters given in the CIC_DB_lib, rolling back a transaction if something went wrong have been implemented to prevent from user mistyping or a bad usage of the tool.

· The ECS, via PVSS, can use the functions provided by the PVSS CIC_DB_lib extension to retrieve information about a device or connectivity between devices and compare with the current results. PVSS communicates with software and hardware via a system of commands and services (settings and reading back parameters). For instance, PVSS had noticed that a switch is down, because it does not respond. It uses the PVSS CIC_DB_lib to update the status of this switch. This triggers an update of the routing tables. Then PVSS loads the newly updated routing tables from the CIC DB, using PVSS CIC_DB_lib. And then it loads into the switches.
· CDBVis allows navigating through the CIC DB. It allows the user to verify that there are no mistakes and that the connectivity has been inserted properly. Here also a lot of checks have been built to ensure consistency and integrity.
Performance Issues

One of the requirements is to load all the information required to configure the experiment, from the CIC DB to PVSS in less than one minute.

A lot of tests have been carried out to tune the SQL queries and the PL/SQL codes. Most of codes have been reviewed by the CERN Database Support. With their help I also set up some stressing tests, where a lot of data are being inserted.
Performance improvement, which had required a lot of work, has been done to find paths between two devices. A requirement was it should not take more than a few seconds to find a path between two devices.
Another type of key tests is the simulation of concurrent accesses to the CIC DB. I implemented a C code which creates several processes which calls functions to query the paths. I wanted to make sure that the execution time fits still within the few seconds (requirement). This kind of tests is also interesting to check the behaviour of insert, delete and update functions.
Organization of this thesis

This thesis is organized as follows:

· The first chapter focuses on the LHCb experiment. It describes its architecture. It also presents the outlines of three important online subsystems: the TFC, DAQ and the ECS. The CIC DB is integrated into the ECS.

· The second chapter gives a brief introduction to the configuration of a HEP experiment. It presents the problems and what tasks need to be performed to configure the experiment. It gives an idea of the complexity of the system in terms of electronics modules and system topology. It also describes the software architecture which has been built to handle this complex task.
· The third chapter describes the outline of the software architecture. It explains how the software which interacts with the CIC DB has been built. It is a 3-tier architecture which consists of the GUI (Graphical User Interface), object and database layers. The database consists of two parts, the table schema and the PL/SQL scripts. The core of the object layer is a C-library which manipulates the data. The GUI layer is composed of PVSS panels and CDBVis, a graphical editor. This architecture should guarantee reliability, consistency and adaptability.
· The fourth chapter presents the approach adopted to propose a reliable and adaptive architecture based on the CIC DB and autonomic tools. The users and requirements are identified. Requirements and the use cases have been collected through discussions and workshops. This step is essential to build an efficient system with a complete and consistent table schema and a set of autonomic tools.

· The fifth chapter explains how the CIC DB table schema was derived by applying the ERM (Entity Relationship Model) to the use cases found. Using the use cases, I have determined the entities and their attributes. The choice of the ERM is discussed and a brief reminder of the ERM is given. Also I describe another representation of the hierarchy based on prime numbers. This new model has been compared with the standard one (performance and limitation studies). I also show that the table schema is complete and the information required to configure the experiment can be stored in the CIC DB.
· The sixth chapter presents an application of the CIC DB to a computer network. The routing and destination tables and DNS and DHCP config files in the DAQ computer farm network are generated and updated automatically. The principles of the algorithm are presented. It is one of the key components of the architecture of autonomic tools. The algorithm has been implemented in PL/SQL and in C. The choice of the language is discussed. Using this algorithm I describe a method to automatically generate the DHCP config file. Also I explain how this algorithm has been extended to enable users to get the detailed paths between devices and between components of devices. I also explain how the DNS server can be configured using similar principles as for the DHCP config file. This set of tools contributes in building an autonomic control system.
· In the seventh chapter I describe the implementation of the autonomic tools to interact with the CIC DB. It is a focus on the object layer. The tools are based on a C-library which allows selecting, inserting, updating, and deleting information stored in the CIC DB. The C-library integrates check functions to ensure a consistent and reliable manipulation of data. It uses OCI to access the CIC DB. A binding to PVSS has been provided as devices must be configured from PVSS. I have also implemented another binding in Python used to build graphical editors.

· The eighth chapter describes the third layer of the architecture, namely the GUI layers. Different user interfaces have been implemented going from PVSS panesl to CDBVis. CDBVis is a Python graphical editor which enables the users to navigate through the CIC DB to detect faulty equipment. Connectivity can also be inserted with this tools

· The ninth chapter presents the different tests carried out to validate the table schema and the algorithms related to paths. I have exercised the algorithm against different types of topologies to test its robustness. I also have tested that the routing tables generated could be programmed in real switches and routers. The DHCP config file generated by our program has been put in a DHCP server to ensure compatibility. Same remark for the DNS.

· The tenth chapter presents the different tests carried out to validate these tools, mainly in the form of their integration into applications such as the TFC, and subdetectors. Several groups are using them for different purposes such as configuring the network, computing configuration parameters values (gain, voltages), etc.

· The eleventh chapter describes how other large experiments are configured. I present the ATLAS thin gas chambers, the VLT (Very Large Telescopes) [21] and ALMA (Atacama Large Millimeter Array) [22] projects. The two latter projects are related to telescopes. The aim of this chapter is to show that our approach is generic enough to be applied in other fields than LHCb.
· Finally I give some conclusions and suggestions for further extensions.

References
[1] CERN website, http://public.Ib.cern.ch/public/
[2] LHC website, http://lhc.Ib.cern.ch/lhc/
[3] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π Decay of the K20 Meson, 10 July 1964. In Physical Review Letters, Volume 13, number 4. p 138-140.
[4] LHCb Collaboration, LHCb Online System Data Acquisition & Experiment Control, Technical Design Report. CERN/LHCC 2001-040, LHCb TDR 7 December 19th 2001.
[5] Shebli Anvar, Olivier Gachelin, Pierre Kestener, Herve Le Provost and Irakli Mandjavidze, FPGA-Based System-on-Chip Designs for Real-Time Applications in Particle Physics. IEEE Transactions on Nuclear Science, June 2006, Vol. 53, number 3, Part I of three parts. 14th Conference on real time (RT 2005) Stockholm, Sweden, June 4-10, 2005. p667-670.
[6] E. van Herwijnen, L.Abadie, A. Barczyk, B. Damodaran, B. Gaidioz, C.Gaspar, R. Jacobson, B.Jost, N.Neufeld, Control and monitoring of on-line trigger algorithms using a SCADA system. Proceedings of the CHEP 06 (Computing in High Energy and Nuclear Physics) Conference, Mumbai, India, 13-17 February, 2006.
[7] Dynamic Host Configuration Protocol, RFC 2131, March 1997, http://www.ietf.org/rfc/rfc2131.txt
[8] Domain Name System Protocol, RFC 1035, November 1987, ftp://ftp.is.co.za/rfc/rfc1035.txt
[9] LHCb Collaboration, LHCb Trigger System Technical Design Report. CERN/LHCC-2003-031, LHCb TDR 10, September 2003.
[10] IBM research: Autonomic computing,
http://www.research.ibm.com/autonomic/index.html
[11] A.Daneels, W.Salter, What is SCADA? October 8th, 1999. In the Proceedings of the International Conference on Accelerator and Large Experiment Physics Control Systems, 1999, Trieste, Italy.

[12] ETM, PVSS II
http://www.pvss.com/index_e.asp?id=2&sb1=6
[13] LHCb ConfDB workshop
http://indico.cern.ch/conferenceDisplay.py?confId=a055409
[14] ConfDB questionnaire
http://lhcb-online.web.cern.ch/lhcb-online/configurationdb/Documents/confDB/Configuration%20Database%20Questionnaire.doc
[15] DATABASE SYSTEMS, a practical approach to design, implementation, and management written by Thomas Connolly and Carolyn Begg, 2002. Third Edition. ADDISON-WESLEY. ISBN 0−201−70857−4. 1236 p.
[16] SQL Structured Query Language SQL-92 Standard, July 1992
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
[17] Steven Feuerstein, Bill Pribyl, Oracle PL/SQL Third Edition, USA: O’REILLY, September 2002. 0-596-00381-1. 1018 p.
[18] ORACLE, Oracle Call Interface, Programmer’s Guide, 10g release 2. ORACLE PRESS, OSBORNE. B14250-02, November, 2005. 1258 p.
[19]Boost Python, http://www.boost.org/libs/python/doc/
[20] GEH, Generic External Handler
http://itcobe.web.cern.ch/itcobe/Projects/Framework/Download/Components/GenericExternalHandler/welcome.html
[21] VLT project,
http://www.eso.org/projects/vlt/sw-dev/wwwdoc/APR2004/dockit.html
[22] ALMA project,

http://www.eso.org/projects/alma/develop/acs/OnlineDocs/ConfigurationDatabase.pdf
PAGE
7

