Chapter 3 Requirements and Use cases

Chapter 4 Requirements and use cases

The chapter presents the approach adopted for configuring the detector. As in any project, the requirements and use cases are described in detail. The aim is to make an efficient table design which should represent the information needed to configure the detector into the LHCb CIC DB. It also gives the outline of the tools which need to be implemented.
4.1 Methodology

4.1.1 Identifying the users of the CIC DB
The CIC DB will be accessed by different types of users for different purposes. It is essential to know what kinds of requests these users will perform. Thus, all the users of the CIC DB must be identified to ensure that the list of requirements and use cases is complete.
[image: image1.jpg]Fault

identificatiop Update the status of

devices and links

— Fault detection process
—> write,update or delete data (configuration, connectivity and inventory related)

— read data (configuration, connectivity and inventory related)

Figure 1. The different users of the CIC DB.
Figure 1 shows the different users which will interact with the CIC DB.
The subdetectors, the TFC and the DAQ people need to save all the different configurations of respectively their electronics modules, their readout supervisors and farm PCs. And on the opposite, these three groups of users should be able to load configurations.
The TFC, DAQ and the subdetectors people need to save the connectivity of their system respectively to configure the TFC switch, to configure the network equipment and to configure some electronics modules (lookup tables for instance) and to test links. And on the opposite, they should be able to get the information (routing tables, DHCP config file, destination tables for the TFC switch, etc.)
The TFC, DAQ and the subdetectors need to save and query information about inventory and history of devices.
The ECS will also query some connectivity information and will update information about the status of a device or a link. An update of the status of a device may occur further to a fault detected by the operators in the control room via some other tools.
To permit the different users to interact with the CIC DB, it is also essential to understand which tools/languages they will use to perform their requests. Table 1 shows the results we came up with (in LHCb Online environment, C, Python and PVSS are the most common languages).

	Users/tools
	C code
	Python code
	PVSS

	DAQ
	Yes
	Yes
	Yes

	TFC
	No
	Yes
	Yes

	Detector
	Yes
	Yes
	Yes

	ECS
	Yes
	No
	Yes

Table 1. The list of the CIC DB users and tools/languages used.

4.1.2 Listing the requirements

One of the most important steps when tackling a new project is to define the requirements. What do the users expect from this project? There are 4 types of requirements to define:
· The common and users requirements;
· The requirements about the integration of the project;
· The requirements about the user interfaces;
· The security requirements.
4.1.3 Collecting the use cases
Use cases
 are used in different fields such as security and risk evaluation. A use case describes how users or applications will interact with the system.

Use cases are very helpful to model the information, i.e., configuration, connectivity and history data. They allow answering to the following questions:
· What are the entities and their attributes?

· What the relationship between entities?
· Which is the necessary data for configuration, connectivity and history?

So by stepping through a use case, one can check whether the final implementation of the system corresponds to the problems it was supposed to solve. Also writing down use cases ensures that the system to design will be complete.

The next sections will describe the use cases which have been used to model the information for the database.

4.1.4 Understanding the LHCb environment

There are different types of software and electronics technology which are used. It was important to understand what the different sub-detector teams were doing from a physics point of view to better understand why they need to do such requests to the CIC DB.

Documents on the architecture of the different subdetectors are useful to have an overview of the different types of topologies.

4.1.5 Building the CIC DB table schema

The table schema has been built using the use cases and the relational model. For each use case, we have tried to model them with ERM diagrams. Some entities appeared in all use cases, other not. Entity attributes have been defined in such way, that whatever the use case is, all the information can be put in one of the attributes. In other words, we have listed and grouped the different attributes that an entity can have through the use cases.

In some cases, we had to design specific entities for a particular subdetector (essentially for the DAQ system). Unlike other subdetectors, the DAQ is a Gigabit network so it requires special settings which will be explained in section 4. However we tried to minimize the number of specific entities for software maintenance reasons.

4.1.6 Integrating and developing tools

The users will not type in directly SQL statements to interact with the CIC DB. Some interfaces will need to be developed so that the users can access and manipulate the information stored in the CIC DB. The deployment of these tools should satisfy the requirements about integration, security and user interfaces.
4.1.7 Validation and tests

The table schema must be validated and all the tools and libraries developed to interact with the CIC DB must be tested. It includes functionalities check and behavior in case of misuses.
4.2 Requirements
Modeling information in a database and implementing the tools depend a lot on the system requirements. Some of them (see list below) can be applied to any database schema.

4.2.1 Common and user requirements about the table schema
4.2.1.1 Completeness and consistency

The table schema must be complete and consistent. The LHCb ECS must be able to retrieve any information related to detector partitioning, device configuration, connectivity and device history. Also the information should be stored in a coherent manner by avoiding data redundancy as much as possible.

Thus it is necessary to specify which type of data should be stored in the CIC DB to satisfy these requirements. In other words, one should know what data to store for the configuration, the connectivity and the history.

4.2.1.2 Performance

Techniques to improve performance in reading (resp. in writing) from (resp. in) a database are different. Thus it is important to determine whether the database will be mainly read, mainly written or both.
Information retrieval from the CIC DB must be quickly executed. The CIC DB will be used most of the time in read-only mode as device configurations and connectivity information will be rather static once the detector will be in the operational phase. For instance, at start up, around 500,000 devices will have to be configured at the same time in 5-10 minutes. To reconfigure the detector (stopping a run, changing the activity or the partition of the run and starting the detector again), the 500,000 devices must be configured in less than one minute.

It is important to identify the most frequent requests from the CIC DB to be able to improve their performance. It will also help in building indexes on tables. Use cases will help in identifying the most frequent type of queries.

Also it is important to have an idea of the number of simultaneous accesses to the database. It will have an impact on the physical design of the database (use of RAC –Real Application Cluster- [1] for instance) and also on creating views in the schema. A view is a selection of the content of one or more tables which fulfill certain conditions.

4.2.1.3 Extensibility

The table schema must be extendable. The type of requirements may change at a later time. For instance, for the moment there is no version implemented for connectivity. It means that it is always the current connectivity which is stored in the database. If in the future, versioning needs to be introduced, it should not affect dramatically the table schema. In other words, it should be possible to easily extend the table schema.

4.2.1.4 Generic schema

Besides the rather general requirements listed above, the table schema must be applicable to all sub-detectors. It means that the representation of the configuration, the connectivity and the history must cater for all sub-detectors despite different types of electronics and different kinds of connectivity. In other words, the table schema needs to be independent of the subdetector. It avoids having a table schema per subsystem. The maintenance of the table schema becomes easier.

4.2.2 Requirements about integration
We came up with the following list, after discussing with the LHCb collaboration.
REQ 1: Most of the users are not familiar with databases. So there is a need to develop tools which allows manipulating the data stored in the CIC DB without typing any SQL statements.
REQ 2: As the configuration of electronics modules should be done from PVSS, an interface to PVSS must be implemented allowing access to the data stored in the CIC DB.

REQ 3: A tool to navigate in the LHCb CIC DB and to view the connectivity needs to be built. PVSS is not really meant for graphical display. Thus the tool will be implemented in Python since it is a popular language at LHCb and it is easy to develop a prototype.

Moreover one of the requirements for this tool is to provide a function which gets all the paths going through a given device and a given subsystem. So there is a need to store to which subsystem(s) a device belongs.

REQ 4: Tools must be as autonomic as possible, especially at the level of equipment management. Human intervention should be minimized. For instance, the creation of routing tables must be automated and self-intelligent, i.e. if a links breaks, another routing path should be proposed if any.
REQ 5: An API must be developed allowing manipulation (query, insertion, update and delete) of configuration, connectivity and inventory/history information.

4.2.3 User interface requirements

This following list is quite common when developing interfaces:
REQ 1: User-friendly;
REQ 2: Clear and simple so that it can be used without the intervention of the developer;

REQ 3: Complete by providing the required functionalities.
4.2.4 Security requirements

The LHCb experiment will be installed underground in a cavern. There will be no possibilities to access the devices of the experiment from outside once the detector starts to operate. There will be on a specific network. However some authorized controls PCs will be accessible from outside as there will have an interface on the CERN network. This access to the outside world has been carefully studied to be very secure.
The CIC DB will be installed underground using Oracle RAC. Back ups will be performed using Oracle backup features. It will be accessed only from the specific network (not the CERN one) so there is no security requirement.

4.3 Use Cases

In this section, we list the different use cases which can be split into 3 parts, use cases about configuration, connectivity and inventory/history.
Some similar use cases can appear more than once (they can be used for different purposes).
4.3.1 Recipes
A list of use cases [2] has been written down and given to the CERN PVSS support group as they are responsible for providing PVSS tools to configure the devices for the whole LHC project. This group has introduced the concept of recipes meaning a configuration for one of a set of devices. We list the most important ones (all these use cases are done from PVSS):
UC 1: The RICH group has received HPDs. They have started to design the configuration PHYSICS for the HPD device type. They save this configuration in the CIC DB on October, 22nd 2005 for half of the HPDs. Then they load the configuration PHYSICS and applied the setting to the half of HPDs it was saved for. They change one parameter and save this configuration again (same name and same devices) on October, 26th 2005. And they load the first version (from the 22nd) of the configuration.
UC 2: The VELO group saves a recipe COSMICS for the 88 hybrids (March, 15th 2006). They load it and apply to it to the devices. They change a few parameters. They save it as COSMICS_TEST for 44 hybrids.
UC 3: The ECAL group has started to design its local control system using FSM. They save the current FSM hierarchy (January, 14th 2006). On January; 28th they load this version on another PC. Then they design and save a recipe CALIBRATIONS for the whole FSM hierarchy (still January; 28th). They load the recipe CALIBRATIONS for the whole hierarchy (parameters + values + list of devices part of it).
UC 4: The ECS saves a recipe TEST for the devices part of the whole FSM tree. Then it loads the recipe TEST for a FSM subtree, i.e. the recipe TEST should be applied only for the devices part of the given subtree.
UC 5: The IT group has saved a lot of recipes for their devices. They do not remember exactly what the names are. They look at the list of recipes they already saved.

UC 6: The HCAL group has installed their equipment and start to design their local control system. Each channel will be illuminated by two LEDs. For calibrations purposes, they need to get which LED(s) illuminate the given channel name.
UC 7: The HCAL group has attributed a quantity of light which is used for computations for links between a channel and a LED. They get the coefficient value for one specific link.
An analysis of these use cases shows that the following requests will be performed against the CIC DB, from and only from PVSS:

· Save a recipe for one or several devices;

· Save a recipe for a hierarchy of devices;

· Save a hierarchy of devices;

· Save different versions of a recipe;

· Load a recipe of a given version for the devices it was saved for;

· Load a recipe (by default, the last version) for a subtree or a list of devices;

· Load a hierarchy of devices.

· Get the list of recipes for a given subsystem;
· Get the connectivity between two devices;

· Attribute a coefficient to a link;
· Get the coefficient for a given link.
4.3.2 Networking
In this subsection, we describe the use cases related to the DAQ network configuration.
UC 1: The DAQ group has set up their network. They want to have static routing tables for performances and debugging reasons. They program the routing tables of the hundreds of routers by selecting the shortest path.
UC 2: The DAQ group configures their DHCP and DNS servers according to their set up.
UC 3: One PC in the DAQ farm is down. They update the routing tables for the routers affected by this failure. They also update the DHCP config file and the DNS files.

UC 4: Extra PCs have been added in the farm. They update the routing tables, the dhcp config file and the DNS files.
UC 5: The DAQ group finds that a TELL1 board behaves strangely. They get some information about this board and its interfaces such as name, location, IP and MAC addresses, serial number, IP aliases.
UC 6: The DAQ network includes several DHCP servers. They do not remember their location. They get the list of DHCP server names and their respective location.
UC 7: The DAQ group gets the list of IP aliases for a given PC in the farm.
UC 8: Part of the DAQ equipment is used to extend cables (patch panels for instance). They do not want to store it as equipment but they need to know if a link is one long cable or several short cables connected via patch panels.

UC 9: The DAQ group has implemented a Flower topology in 2003. In 2005, the price of switches and routers became cheaper. They could afford to buy the Force Ten router. They defined a new topology. They want to only keep the current design in the database.
For the use cases UC 1 to UC 4, they use autonomic tools as it is quite tedious and bound to mistakes to do all these operations manually.

From these use cases, the following requests are derived:
· Generate the routing tables for the DAQ routers;

· Generate the DHCP config file;

· Generate the DNS files;

· Update the routing tables when there is a change in the set up (new PCs added, a PC breaks)

· Update the DHCP config file;

· Update the DNS files;

· Get information about a device and its interfaces;

· Get the list of IP aliases for a given device;

· Get the list of devices which fulfills a specific task (DHCP, DNS server);

· Insert the connectivity of the system;
· Add information about a link;
· Delete the connectivity of the system.

4.3.3 Partitioning

The partitioning affects the TFC system essentially. The three following use cases have been collected.

UC 1: The shift operator has defined the following partition {ST, VELO, L0 TRIGGER, ECAL}. The TFC switch is configured accordingly.

UC 2: The TFC group has received 2 extra readout supervisors. They get the current list of readout supervisors. They check to which inputs of the TFC switch they are connected. They install and connect the two extra ones.
UC 3: The shift operator selects a region of one station in MUON subsystem as partition for debugging reasons. The TFC sends the clock to this group of devices.
The requests which come up are as follows:

· Program the TFC switch according to the partition, i.e. to which outputs of the TFC switch these subsystems {ST, VELO, L0 TRIGGER, ECAL} are connected;
· Get the list of devices of a given type;

· Get the input or output connectivity of a device;

· Get the output port of the TFC switch which sends signal to a group of electronics module.
4.3.4 Equipment management
4.3.4.1 Scenarios
This subsection gives a list of the use cases related to equipment management:
UC 1: The VELO group has received 30 spare hybrids. They are stored in building 15, R-008, on August, 23rd 2007. On January, 2nd, they make an inventory of their spares. Where are they? And how many do they have per type?
UC 2: The OT group has sent many devices to be repaired these two last months. However, they do not remember their names. They ask for the list of devices which are being repaired.
UC 3: The Silicon Tracker group has noticed that one of its TELL1 boards often fails this year. They get the history (of this device) which describes the different statuses with some comments and the date of this change of status, for this year.
UC 4: MUON_TELL1_12 has been IN_USE since July, 21 2006. Then it broke on October, 23 2008. MUON_TELL1_12 has been replaced on October, 24 2008.

UC 5: The HCAL has 5 PMTs which are destroyed. So they want to store this information.

UC 6: The RICH1 has 10 HPDs which were working fine until today. They need to send these HPDs to Oxford for some tests. It should be known that these devices are in Oxford for some tests.
UC 7: A readout supervisor is installed (underground) and is working. Two days later, it has a slight problem which can be fixed quickly. It is taken out from its emplacement and put in a special test area where it can still have an IP address part of the internal network. They are a specific number of boards which can be test here. It should be reported that this readout supervisor has to be taken out for local tests.
UC 8: The MUON group has a lot of Muon Front-End electronics which need to be installed. Unfortunately, they made a mistake when reporting their location. They put half of them in station 1 and the others in station 2, whereas it should have been the other way around. They must be able to correct this error.

UC 9: A chip located on a RICH L0 electronics board fails. It has been replaced on its own by another one in spare if any.

UC 10: A chip located on a PRS DAC board does not work. The whole board needs to be replaced.

UC 11: the RICH group wants to get the history of the chip XXX located on a L0 electronics to verify how many times it fails.

4.3.4.2 Device status

So the possible statuses that a device can have are the following:

· IN_USE. It means that the device is installed in the pit with a specific location and is ready to be used.

· SPARE. It means that the device is on the shelf and it is not connected. It will be used to replace a device.

· IN_REPAIR. It means that the device is in reparation further to a failure or a break down.

· DESTROYED. This is the worst case. The device is dead.

· EXT_TEST. It means that the device has been taken out from the pit and it is tested in a lab (inside or outside CERN). Usually the scenario is the following. The device is IN_USE and then it behaves badly. So it is taken out from its place to be tested elsewhere.

· TEST. It means that the device is tested locally, still in the pit. So contrary to EXT_TEST, the device will benefit from the local infrastructure (i.e., a location, IP and MAC addresses if necessary). The scenario is the following. The device is IN_USE and then it gives strange results. It will be taken out from its location and tested locally in a place reserved for local tests. Usually it is used when the expert thinks that it can be fixed quickly. If it is more serious than foreseen, the device is tested in a lab with more tools. In that case, the device changes its status and goes from TEST to EXT_TEST.

When the status of a device changes its new location and the date of change must be reported.

For replaceable microscopic components, as not all of them can be replaced, the different statuses are the same as for the devices. If they are not replaceable, their status corresponds to the one of the motherboard.
4.3.4.3 Allowed transitions
In my case, Table 2 shows the allowed transition, given the initial status of a device.

	Device initial Status
	Is allowed to go to status

	IN_USE
	SPARE, IN_REPAIR, TEST, DESTROYED, EXT_TEST

	SPARE
	IN_USE

	TEST
	SPARE, IN_REPAIR, IN_USE, DESTROYED

	EXT_TEST
	SPARE, IN_REPAIR, IN_USE, DESTROYED

	IN_REPAIR
	SPARE, IN_USE, DESTROYED

	DESTROYED
	

Table 2. Allowed transitions.

Same rules can be applied for replaceable microscopic components.
4.3.4.4 Duality between hardware and functional devices

UC 4 raises the following problem:

Is MUON_TELL1_12 before October, 23 2008 the same as after October, 23 2008?

From a hardware point of view, the answer is no whereas from a functional point of view the answer is yes. Indeed MUON_TELL1_12 as functional device will perform the same functions before and after October, 23 2008. However the hardware device which occupies the MUON_TELL1_12 function is not the same before and after October, 23 2008.

So there are two dimensions to take into account, that are functional and hardware.

A hardware device is uniquely identified by a serial code. A functional device is uniquely defined by its functional name. If a hardware device is IN_USE, it will inherit the location of the functional device it occupies. The location is associated with the functional device when the hardware is IN_USE.

Using this concept the previous scenario is reformulated as follows. MUON_TELL1_12 associated with the hardware device XDG67FDG77 has been IN_USE since July, 21 2006. Then it broke on October, 23 2008. MUON_TELL1_12 has been replaced by the spare GHOFD89878 on October, 24 2008.

The status of the functional device is deduced from the status of the hardware device associated with this function as it is shown in Table 3. Table 3 should be read as follows if a hardware device is IN_USE, then the functional device associated is IN_USE.

The status of a functional device can be {IN_USE, NONE}. The status NONE means that there is no hardware device which can perform the function.

The same remark can be made for configuration and connectivity. They are also functional concepts. Devices will be modelled in PVSS using functional devices, otherwise whenever a hardware device is replaced or destroyed, it implies to update all the device names which is clumsy. For the connectivity, it is the same thing. Switches, DHCP and DNS servers use names and not serial numbers. Also for the partitioning, it is a list of functional devices which will be given, not a list of serial number. Moreover it is more meaningful for the users to talk about MUON_TELL1_12 than GHOFD89878.

	Hardware device status
	Functional device status

	IN_USE
	IN_USE

	TEST
	NONE

	EXT_TEST
	NONE

	IN_REPAIR
	NONE

	SPARE
	NONE

	DESTROYED
	NONE

Table 3. Correspondence between hardware device and functional device statuses.
The duality between hardware and functional devices is also applicable to microscopic devices.
4.3.4.5 Queries

The following types of queries will be performed according to the use cases.
· Get the list of spare devices (hardware devices) given a location;
· Get the list of spare microscopic devices (hardware components) given a location;
· Get the list of spare microscopic devices (hardware components) given a type;
· Get the list of spares of a given type;
· Get the history of a device (either hardware or functional) over a certain period;

· Get the history of microscopic device (functional or hardware);

· Get the list of devices (hardware or functional) which have the given status;

· Get the list of microscopic devices (hardware or functional) which have the given status;

· Replace a functional microscopic device with a spare;

· Replace a functional device with a spare;
· Update the status of a device (either functional or hardware);
· Update the status of a microscopic device (either functional or hardware);

· Update information about a microscopic device (functional or hardware) due to mistypes.

· Update information about a device (functional or hardware) due to mistypes.
4.3.5 Fault detection
The following use cases describe different ways to detect fault in the experiment.
UC 1: The OT subsystem installs their equipment. They test their chain of equipments by injecting patterns, from device A to device B. Device B does not receive any signals. Where and what is the faulty device or link?
UC 2: A VELO hybrid consists of 16 beetles chips. Each group of 4 sends signal to a mezzanine driver located on a repeater board. One beetle chip located on a VELO hybrid fails. Which mezzanine driver on which repeater board is affected?
UC 3: Some TT TELL1 boards give strange results. They are installed in the same rack. Where is the problem? Is it the rack or the TELL1 boards? They swap one of these TELL1 boards with a functional one. They compare the result. It seems that it is due to the rack. They redo the swap. They get the history of this rack to check if there were any previous failures.
UC 4: A RICH TELL1 XX board does not work properly during data taking. It is replaced by another one, if there is one. And XX is tested locally benefiting from the underground infrastructure (IP addresses, etc.). It still does not work. It goes back to the institute who built it.
These use cases imply the following requests:

· Get the paths between a functional device A and a functional device B;
· Get the paths between a microscopic component C and a microscopic component B located on two different motherboards;

· Swap two functional devices;
· Update the status of a functional or a hardware device.

4.4 Conclusions

In this chapter, we have seen the methodology applied to design the CIC DB table schema and the appropriate tools which interact with the CIC DB. The approach includes identifying the groups of users and collecting the different requirements and use cases. One of the difficulties was to make sure that the list of use cases and requirements was complete and correct. Formal and informal meetings helped in ensuring that at least the essential needs were covered. However, nothing could prevent from having a new requirement or use case when almost everything was implemented. On the other hand, it was a good mean to test the robustness of the tools and the efficiency of the database schema, which will be explained in the next chapter.
References

[1] Oracle RAC documentation,

http://www.oracle.com/technology/products/database/clustering/pdf/twp_rac10gr2.pdf
[2] List of requirements and use cases regarding the PVSS configuration framework for LHCb http://lhcb-online.web.cern.ch/lhcb-online/configurationdb/default.htm#Doc

� The word “use case” has not the same meaning as in UML language. In the context of the thesis, it means problems.

