

Requirements for the LHCb Controls

JCOP Workshop

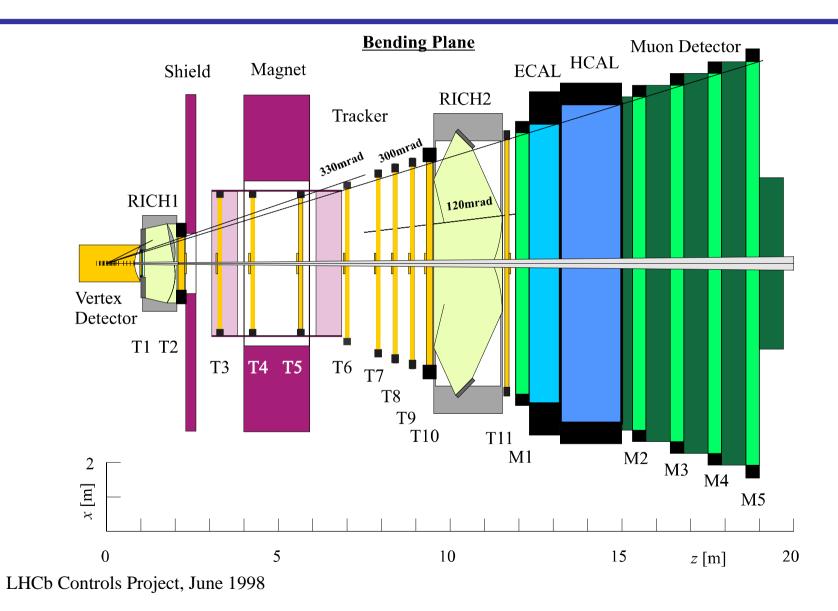
3-5 June 1998

P. Mato, CERN

for the LHCb Collaboration

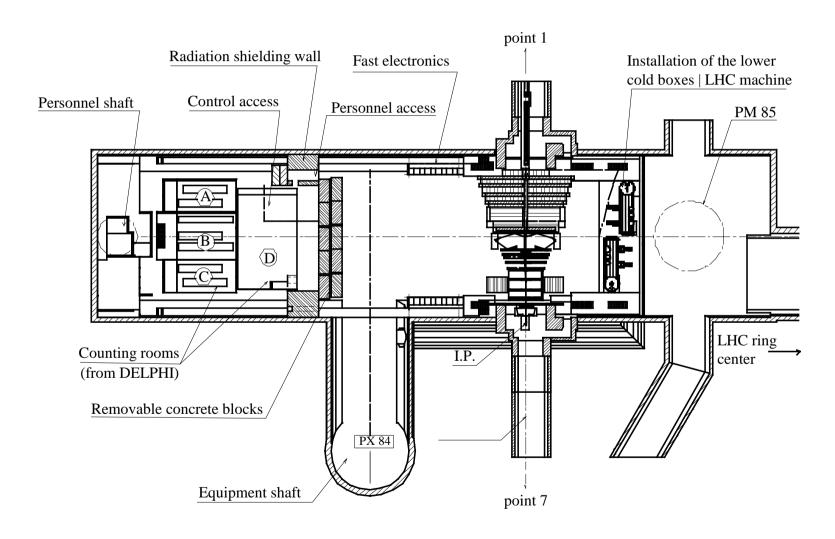
Contents

- ◆ The LHCb experiment
 - Physics goals
 - Detector
 - LHCb in numbers
- ◆ Requirements
 - General requirements
 - Specific LHCb requirements
 - Immediate needs
- Project Organization and Planning


LHCb: Physics Goals

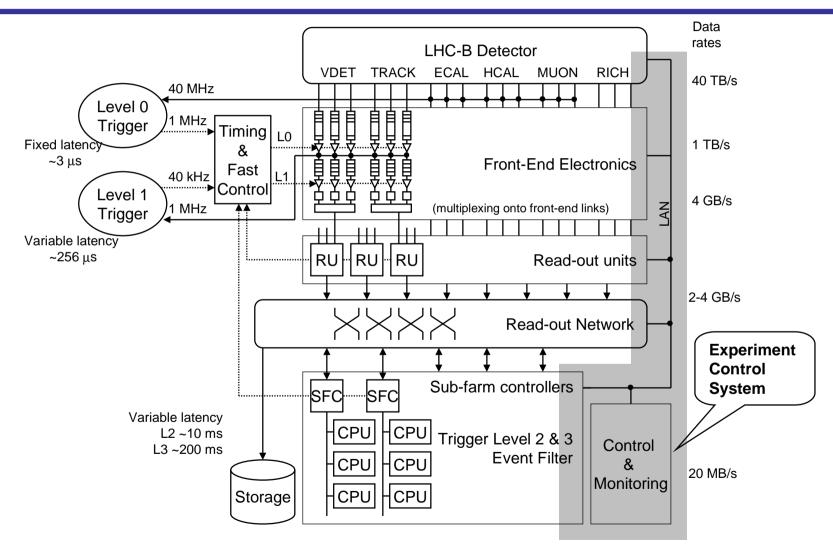
- ◆ LHCb is a dedicated experiment at LHC collider for precision measurements of CP-violation and rare decays
 - CP violation currently observed in kaon decays is consistent with Standard Model, but cannot exclude that CP violation is partly or even entirely due to new physics.
 - Cosmology (baryon genesis) suggests that an additional source of CP violation other than the Standard Model is needed.
- lacktriangle LHC is an ideal place to produce lots of B_d and B_s
- ◆ All interesting decay channels have 10⁻⁵ visible branching fractions.

LHCb: The Detector


LHCb: The Detector

- ◆ Single-arm spectrometer with forward angular coverage from ~10 mrad to ~300(250) mrad.
 - Vertex detector
 - » Si r- ϕ strip detector, single-sided 150 μ m
 - Tracking system
 - » Outer: drift chamber honeycomb. Inner: MSGC with GEM or MCSC
 - RICH system
 - » RICH1: Aerogel + C_4F_{10} . RICH2: CF_4
 - Calorimeter system
 - » Preshower: single layer Pb/Si. ECAL: Shashilik. HCAL: Atlas Tile Cal.
 - Muon system
 - » Multi-gap RPC and CPC

Experimental Zone


LHCb in numbers

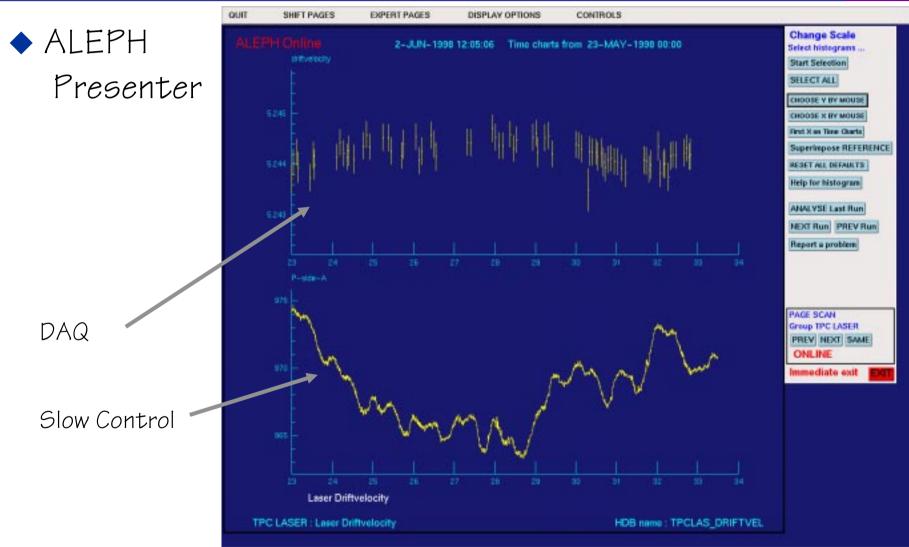
- Collaboration: 42 Institutes, 336 participants
- ◆ Cost of the experiment: 86 MCHF
- ◆ Electronics: ~10⁶ readout channels
- ◆ Trigger System: 4 Levels. 40 MHz \rightarrow 1 MHz \rightarrow 40 kHz \rightarrow 5 kHz \rightarrow 200 Hz
- ◆ Data Acquisition: 70 kB/event. 2-4 GB/s \rightarrow 20 MB/s. 1.5 10⁶ MIPs
- ◆ Status of the Experiment:
 - Feb 98 Technical Proposal submitted
 - We hope Jul 98 recommendation by LHCC and Sep 98 approval by Research Board.
- → LHCb is a smaller and newer collaboration than ATLAS or CMS. Comparable to the size of a LEP experiment. Less advanced (TP now, TDRs by 2000). But, it needs to be ready at the same time.

LHCb: Trigger & DAQ system

Requirements

The Experiment Control System

- ◆ The ECS will be used to monitor and control the operational state of the LHCb detector, of the data acquisition and of the associated experimental infrastructures.
- ◆ Typical sub-systems are:
 - Gas systems
 - High and Low voltages
 - Read-out electronics (front-end and read-out network)
 - Environmental parameters (temperature, pressure, etc.)
 - Cooling and ventilation
 - Equipment Safety


General System Requirements

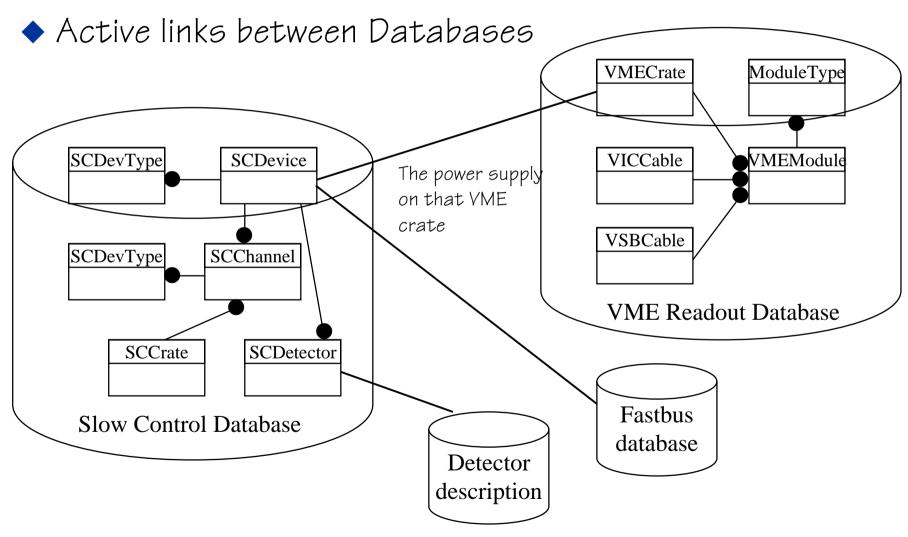
- Common control services across experiment:
 - Distributed information system. Control data archival and retrieval.
 - System configuration services. Coherent information in database.
 - Error reporting and alarm handling.
 - Data presentation: Status displays, trending tools, etc.
 - Expert System to assist shift crew.
- ◆ Objectives
 - Easy to operate: 2-3 people to run the complete experiment.
 - Easy to adapt to new conditions and requirements.
- ◆ Integration of DCS with the control of DAQ and Data Quality.

Integrated System: Example (a)

Integrated System: Example (b)

- ◆ ALEPH Error Logger
 - The operator running the experiment needs only to interact with a single error display to deal with all problems.

```
DAQ


2-JUN 11:30 ALEP R_ALEP_0 RUNC_DAQ ALEPH>> DAQ Error
2-JUN 11:30 ALEP TPEBAL MISS_SOURCE TPRP13 <1_missing_Source(s)>
2-JUN 11:30 ALEP TS TRIGGERERROR Trigger protocol error(TMO_Wait_No_Busy)

Slow Control

2-JUN 11:30 TPC SLOWCNTR SECTR_VME VME CRATE fault in: SideA Low
```

Integrated System: Example (c)

Integrated System

- ◆ Different components which can communicate easily with each other by sharing services. (example: MS Office)
- ◆ Integrated ≠ Monolithic
- ◆ Advantages:
 - Same look-and-feel in all applications. Easier to learn.
 - Re-use. Better quality and easy maintenance.
 - Facilitates trouble-shooting.

System partitioning

- We would like to build a single control system which can be partitioned instead of building n independent systems.
- ◆ Partitioning would allow:
 - Independent development of the controls for the sub-systems or sub-detectors and later integration.
 - Allow various sub-detectors to run independently and concurrently while minimizing possible interference (test, commissioning, calibration, etc.)

Specific Requirements

Detector Control

	GAS	HV	LV	Align.	Calib.	Environ.
Vertex		✓	✓	✓		✓
Inner Tracking	✓	✓	✓	✓		✓
Outer Tracking	✓	✓	✓	✓		✓
RICH 1 & 2	✓	✓	✓	✓		✓
Preshower		✓	✓		✓	✓
ECAL		✓	✓		✓	✓
HCAL		✓	✓		✓	✓
Muon	✓	✓	✓	✓		✓
DAQ			✓			✓

- ◆ Infrastructure (cooling, ventilation, magnet, power, LHC...)
 - Monitoring and Error/Alarm handling.
- ◆ Front-end electronics
 - Configuration, parameter downloading (thresholds, gains, timing, operation mode, etc.)

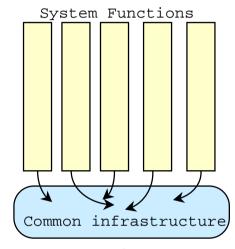
Specific Requirements (2)

- ◆ Trigger system
 - Configuration: Program activation and parameter downloading.
 - Commands: Enable/disable.
 - Monitoring and Alarm handling.
- Read-out units and read-out network
 - Configuration: Network configuration, parameter downloading.
 - Run time backpressure (trigger throttle).
 - Monitoring and Alarm handling.

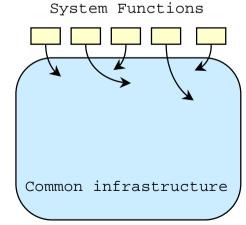
Event Filter farm

- Configuration: Program activation and parameter downloading.
- Monitoring and Alarm handling.

Specific Requirements (3)



- ◆ Scale of the LHCb Control system
 - Detector Control: $O(10^5)$ parameters
 - FE electronics: Few parameters x 106 readout channels
 - Trigger & DAQ: $O(10^3)$ DAQ objects x $O(10^2)$ parameters
- Environmental constraints:
 - Radiation:
 - » $L = 2x10^{32}$ cm⁻²s⁻¹. At distance > 4 m (1krad in 10 years) standard electronics. Inside detector, radiation-hard or tolerant.
 - Accessibility:
 - » Open geometry. Easy access if LHC not running.

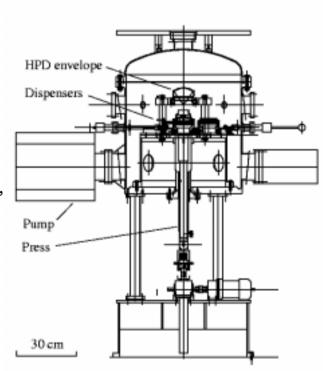

Architecture-driven

- We are convinced of the importance of having a good architecture:
 - Maximize common infrastructure, more reusable components.
 - Technology changes. Evolution.
 - Better quality.
- Creation of a framework that satisfies all known hard requirements and is able to adapt to those requirements that are not yet known or well understood.

Requirement-driven project

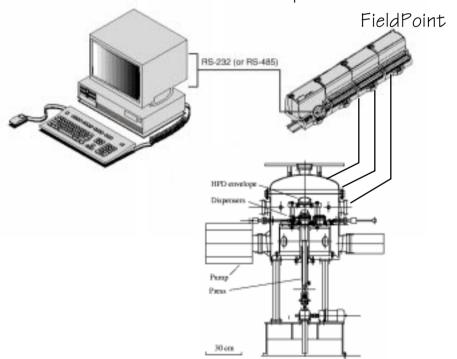
Architecture-driven project

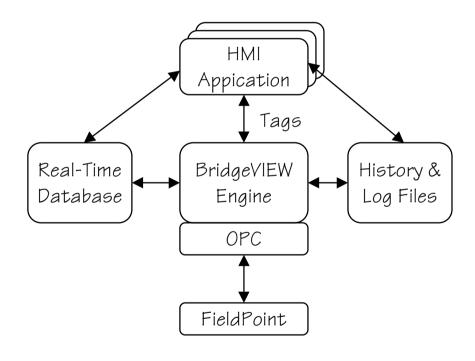
Immediate needs



- We have and will have control needs in labs, test beams, production sites, etc.
 - We do not want to compromise the final system to satisfy the immediate needs.
 - Ad hoc and interim solutions will be provided. The requirements of these solutions are different from those of the final system.
 - A migration path from the interim solutions to the final system is envisaged.
- Current immediate needs:
 - Test beams: Not yet big enough to require a control system.
 - Laboratory: The Hybrid Photodiode (HPD) laboratory example.

Immediate needs: HPD Laboratory


- ◆ HPD Photocathode Deposition (A. Go et al.)
 - To monitor and control photocathode deposition process for the fabrication of Hybrid Photodiodes.
 - Two monitor and DAQ rates:
 - » Slow Rate: During the vacuum bake-out process (~72hrs), the temperature and pressure of the deposition chamber are monitored.
 - » Fast Rate: During the deposition process (~20min.), the deposition current, substrate temperature and thickness are controlled. The photocathode current, temperature and pressure are monitored.
 - Control needs:
 - » 4 Output parameters (3 analog and 1 digital)
 - » 8 Input parameters (analog)


Immediate needs: HPD Laboratory (2)

Based on OPC server/client model:

• FieldPoint distributed I/O system connected to PC via RS-232 port.

•BridgeVIEW Process control software

OPC = OLE for Process Control

Project Organization and Planning

Project Organization

- ◆ The LHCb Controls Project is part of the overall Computing Project which includes the on-line and off-line computing activities and covers both hardware and software.
- ◆ A dedicated team will be responsible for the LHCb common control infrastructure. The sub-detector teams will be in charge of adapting/developing sub-detector specific applications.
- ◆ Active participation in the LHC Joint Controls Project. We relay heavily on the positive outcome.

Project Organization (2)

Steering Group

• Coordination, Planning, Resources

Computing Facilities

- •Farms
- Desktop
- •Storage
- Network
- •Operating System

Recon-	Analysis	Simulation	DAQ	Controls	Control
struction					Room
•Level 2	•Framewk	•GEANT4	•Event	•DCS	Operations
•Level 3	•Tools	Framewk	Builder	•LHC	Consoles
Prompt Rec.		•Tools	Readout	Safety	Shift Crew
•Full Rec.		Production	Network	•Run	Enviroment
Calibration			Interfaces	Control	
			•Links		
			Crates		
			•DAQware		

Re-usable Components

- •Data Management : Event Store, Geometry, Database Utilities, ODBMS
- •Architecture : Frameworks, Component model, Distributed system
- •Toolkits: GUI, Histograms, Communications
- •Utilities: data quality monitoring, event display, bookkeeping

Software Engineering Group

- Methods
- •Tools
- •Code Management
- Quality
- •Document.
- $\bullet Training$
- •Licenses
- •Collab.

Tools

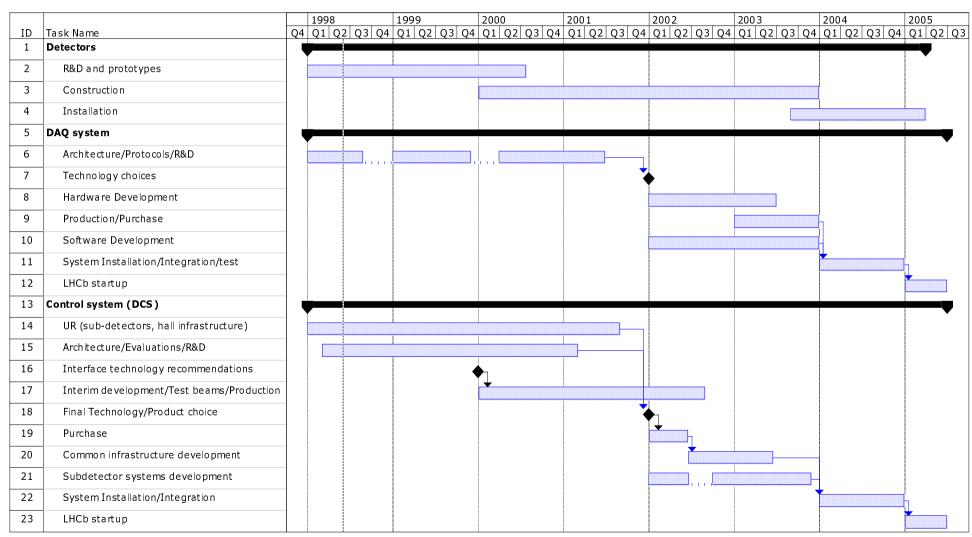
Project Planning

Main Milestones:

- Choice of technology for the hardware interfaces: Jan 2000
- Choice of final product/technology: Jan 2002
- Installation/integration & commissioning during 2004
- Operational system in 2005

From now to Jan 2002

- Understanding requirements. Architecture design.
- Coordination.
- Evaluations of products and technologies.
- R&D. Prototypes. Interim solutions.


Evaluations, Prototypes and R&D

- Gathering knowledge for final product/technology choice.
- Activities which are interesting from our point of view:
 - Field buses: Understanding them. Hands-on practice. Limitations. Software protocols. Hardware interfaces.
 - PLCs: Understanding them. Hands-on practice. Limitations.
 - OPC standard: Understanding the standard. Test various configurations. Survey market.
 - Integration technologies: Understanding them. Building systems out of software components (componentware). Prototypes.

Project Planning (2)

Conclusions

- ◆ We try to apply lessons learned from LEP experiments.
 - Global computing approach (reduce on-line & off-line barriers)
 - Promote re-usable components which provide services across applications.
 - Integrated Experiment Control System.
 - Avoid duplication inside same experiment.
- ◆ The diversity in control entities in LHCb is similar to other LHC experiments. Therefore, equivalent complexity.
- ◆ We are in an R&D phase for the next 2 years.
- ◆ LHCb is fully committed to the LHC Joint Controls Project.