THE LHCB CONFIGURATION DATABASE
L. Abadie™% E. v. Herwijnenl, C. Gaspar, R. Jacobsson, B. Jost, N. Neufeld

! CERN, Geneva, Switzerland, 2 University Pierre et Marie Curie (Paris VI), LIP6

ABSTRACT

The Experiment Control System (ECS) [1] will handle the monitoring, configuration and
operation of all the LHCb experimental equipment. All parameters required to configure
electronics equipment under the control of the ECS will reside in a configuration database. The
database will contain two kinds of information:

1. Configuration properties about devices such as hardware addresses, geographical location,

and operational parameters associated with particular running modes (dynamic properties).

2. Connectivity between devices: this consists of describing the output and input connections

of a device (static properties).

The representation of these data using tables must be complete so that it can provide all the
required information to the ECS and must cater for all the subsystems.

The design should also guarantee a fast response time, even if a query results in a large volume
of data being loaded from the database into the ECS.

To fulfill these constraints, we apply the following methodology:

e Determine from the dataflow the list of all devices in the subsystem and the connections

between devices

o Collect use cases and apply the Entity Relationship Model to design the schema of the tables

¢ Define an API allowing users to interact with the database according to the use cases.

¢ Implement the API and create tools.

The configuration database is a relational database which has been implemented using Oracle. A
part of the configuration database is built using the Database tool developed in common for the
four LHC experiments by JCOP (Joints Controls Project) [3].

To test the configuration database design we have integrated it into the LHCb TFC and DAQ
systems.

INTRODUCTION

LHCD is one of the four particle detectors at the CERN LHC (Large Hadron Collider). The
monitoring, configuration and operation of experimental equipment will be handled by the ECS
(Experiment Control System).Fig. 1 shows the relationship between ECS and other systems.

PVSS [2], a SCADA (Supervisory Control and Data Acquisition) system provides the interface
to the experiment’s equipment. A run is associated with an activity or mode such as calibrations,
physics which corresponds to a particular setting of the detector and with a partition. A partition is
a part of the detector which can run independently and concurrently. For each activity, we store the
settings of each controllable device which represents huge amount of data in the configuration
database.

So all information regarding controllable electronics equipment will be extracted from the
configuration database and loaded into PVSS.

In order to define a common architecture between the four experiments, JCOP offers a common
framework and tools for PVSS. One of these tools enables users to save and load configurations
of devices.

To allow partitioning, we also store information about connectivity between devices in
the configuration database using LHCb specific tools.

Experimental Equipment

» To Offline
DB

Figure 1 : External data handling architecture.

THE SCHEMA

In this section we describe the objectives and requirements of the LHCb configuration database,

and the methodology used to design its schema.

Objectives

The database should contain the data that the ECS needs to configure the experiment’s
equipment:

e Static properties. These correspond to properties that don’t change or change very
infrequently, e.g. the hardware addresses, the geographical location, and device structure.
Changes in this data involve a hardware intervention. This information is very useful to keep
track of devices especially for debugging.

¢ Dynamic properties. These correspond to properties that change with the activity, e.g. alarm
settings, hardware settings such as ramping speed.

e Connectivity. This describes how a device can be connected to other devices, e.g. a switch
can be connected through one of its input ports to a supervisor and through one of its output
ports to a card somewhere in the detector. This allows the creation of routing tables on the fly
for dynamic programming of switches or lookup tables for trigger boards. This information is
used for partitioning, in other words to determine what devices need to be configured per
subsystem and also how to interconnect all the detector subsystems with the TFC, DAQ and
ECS.

Requirements

The following requirements should be taken into account:
e The schema should be integrated with the one used by the JCOP configuration database tool.
¢ The schema should be generic enough to cater for all detector subsystems.

The database should be complete so that the ECS finds all the required information.

The design should guarantee a reasonable response time when a query resulting in a large
volume of data is retrieved from the database into the ECS.

The tables should be easy to maintain.

The database will be filled principally from PVSS.

It should be possible to use the database remotely, possibly without a connection to the
database.

A graphical tool is required to navigate and edit the data.

Methodology

The following methodology has been applied for each subsystem:
o Consider its dataflow. Fig. 2 shows the TFC (Timing and Fast Control) system dataflow [4].
From this we can determine:
o The list of all devices in the subsystem, e.g. readout supervisor, TFC switch,
different fan-out types such as TTCtx, TTCrx belong to the TFC system.
o The connection between devices, e.g. the TFC switch is connected to the
readout supervisor on input and to a TTCtx fan-out on output.

Cloch recaiver|

WHC S99 f and famout

Trigger sditeer || Tripger solitber

Readout FReadout & Reacout
Supervigor y Suparasor Supsnisor
T

i e ———
TFC switch L1 Throttie switch
|| TTTTTTITT |
Ty v ¥

TTC system

Figure 2: TFC dataflow system

e Collect use cases. The following is an example from the TFC system. For a partition
consisting of the VELO and ECAL subdetectors, determine the appropriate readout
supervisor and the internal connectivity of the TFC switch. This use case introduces
the concepts of links and paths (c.f. Fig. 3) [5].

Figure 3 Concept of links and paths

b 1 2 3 6 7 B 9 10 1112 13 14 15
TFC switch
b 1 2 3 6 7 8 9 10 11 12 14 15
TTCtx 1 (5fan-0u1? TTCtx 2 (5fan-out)
:“!.”\i‘::‘*.? I S N i o
TTCoc 1 gfan-out)
]
TTCrx 1 (fan-out)
e
\, Alink
! VELzO carcg A path

o Use the entity relationship model to design the schema of the tables [6]. Fig. 4 shows the

Table design

devicetype_booting

PK.FK1 | devicetype

boot_protocol

kernel_image_location
initrd_image_location
physical_location
boot_image_location

destination_table

PK,FK1
PK,FK1

pathid
nodeid start0

FK1 nodeid_start1
nodeid_end0
FK1 nodeid_end1
path_length
pathused
pathtype

port_nbr
port_nbrdestin

destinationname

Figure 4 Table design for the LHCb specific part

Device_Type
> PK | DeviceType
Nbofinput eylcs
: = Nbofoutput | g PK |devicelD
logical_links e
gical_l description port_properties
PK,FK1 | Linkid systemMName deviceName
FK1 | deviceType PK |portiD
link_weight — hostname
pfrom connectivity aclive e port_nbr
pto PK | linkid roge $IFF§
lkaggreg > > promiscuous_mode X
nods_from FK1 | node_from T HUID e
node_to port_nbrirom v bar_gada el
linkused | | e [ode ¢ el
node_to Speed3
F 3 h - :?0:{'5'10 Port_Management
ink_type Wire_Sense
bidirectional_used Link_Type Phy -
FK3 |link_trunkNb Forced_Speed
e link_weigth P PK | link typelD BMC_booting
pathdetails linkused - Primary_interface
PK pathid link_name Traffic_type supported
PK.,FK3 |nodel FK1 | devicelD
: A 4 A
path_weight trunk_link.
FK1 node2
FK2 node3 PK | TrunklD
node_11 FK1 | Aggreglk_add
pathused
pathtype routing_table
A A PK |pathid) 4
NODEID_STARTO i
PK _|NODEID START IP_Ethernet Mapping
port_nbr PK |Ethernet add
path_length
pathused Ip_add
pathtype P ck1 | PortiD
FK1 |ethernet_add_destin Subnet_Mask
FK2 |ethernet_add_nexthop | VLAN_Ersﬁx
FK3 :8333,2;@31’1 LkAggreg_type
- IP_name
FK3 |NODEID_END1 -
FK3 | pathid
FK3 |nodel

IMPLEMENTATION

This section describes the components and tools of the configuration database.

Integration of the JCOP configuration database tool

An important requirement was to fully exploit the work done by JCOP. This tool provides tables
that contain dynamic device properties. They are stored in the configuration database from PVSS
panels. It does not store information about links or hierarchy which are stored in tables specific to
LHCb. Some work had to be done to provide a unified interface to both sets of tables; the LHCb
tables point to information stored in the JCOP part to avoid duplication of data.

Conventions regarding the name of devices and activities ensure the coherence between the JCOP
tables and the LHCb tables. We have suggested that all devices and activities should be prefixed
by the subsystem name when saving them in the configuration database. For instance, a beetle chip
from the VELO subdetector will be called VELO_beetlename.

Fig.5 shows the two different parts of the database.

The confDB library

The LHCD specific part of the configuration database consists of storing the connectivity of the
devices in each subsystem. We have designed an API to allow developers and users to populate
and query against the LHCb specific part.

The API has been implemented as a C library of functions [7] using OCI [8] called confDB library.

This library is used to:

e Populate the database with links between devices.
o Generate routing and destination tables
o Get the path between 2 devices.

A PL/SQL [9] package provides functions to generate routing and destination tables. The

PL/SQL functions are part of the library.

PVSS System
PVSS Libraries & Tools

\ Conf. DB

e E—"
w_Teclpes

properties

Ej Tables provided by JCOP -
— —
Tables specific to LHCh

Figure 5 : the two parts of the configuration database: LHCb specific part and tables provided by
the JCOP tool

Implementation details

The configuration database has been implemented using Oracle technology. Oracle was chosen
because of the CERN Central support and the wide range of tools. For future extensions of the
database to other subsystems, we have tested the initial prototype and provided with some
feedback. A new version of the JCOP tool is expected by end September 2005. We shall use this
version to store the dynamic subdetector data related to an activity.

To interface the confDB library with PVSS, we use the General External Handler, module
provided by JCOP

Standard database editors are not good at making the table structure explicit. We required a tool to
inspect the links and hierarchy of the devices in the database graphically

We have implemented in Python a tool to edit and navigate through the database (see next
subsection for details). This python tool also uses the confDB library. To make it work with
Python, we have first to develop a C++ interface and then to use BOOST [11] integrated with
Gaudi to interface with Python. A Python prototype (cdbVIS [12]) allows viewing of the
connectivity.

We keep the different versions of PVSS projects and other software in CVS [13].

CONCLUSION

The design schema has been done for the DAQ and TFC system. We will apply it for the other
LHCD subdetectors.

We have also integrated PVSS and the configuration database (JCOP and LHCb parts). We have
developed a C library of functions and integrate it in PVSS and also in Python.

We also plan to add some functions such deleting and updating attributes and also to extend the
features of the cdbVis.

The initial JCOP looks promising and we are waiting for the new version.

We can store the connectivity but we need to define the granularity: it will be a case by case based
on subsystems.

We need to write some user guidelines and to start thinking about storing the history.

ACKNOWLEDGEMENT
We would like to thank the JCOP group especially Piotr Golonka and Manuel Gonzales for their
help with the JCOP confDB tool.

REFERENCES

[1] http://Ihcb-comp.web.cern.ch/lhcb-comp/ECS/default.html

[2] http://itcobe.web.cern.ch/itcobe/Services/Pvss/welcome.html

[3] http://itcobe.web.cern.ch/itcobe/Projects/Framework/

[4] http://Ihcb-comp.web.cern.ch/lhcb-comp/TFC/default.html

[5] http://Ihcb-online.web.cern.ch/lhcb-online/configurationdb/PLSQLpck doc.htm
[6] http://Ihcb-online.web.cern.ch/lhcb-online/configurationdb/default.htm

[7] http://www.w3schools.com/ado/ado_connect.asp

[8] http://Ihcb-online.web.cern.ch/lhcb-online/configurationdb/APlusage.htm
[9] http://www.oracle.com/technology/tech/oci/index.html

[10] http://www.oracle.com/technology/tech/pl _sql/index.html

[11] http://www.boost.org/libs/python/doc/index.html

[12] http://lhcb-comp.web.cern.ch/lhcbcomp/ECS/configurationdb/cdbVis.htm
[13] http://isscvs.cern.ch/cgi-bin/cvsweb.cgi/TFC/?cvsroot=lhcb

