Projectplan configuration database

June 5, 2003

Global activities

1. R/D.

· Choice of technology: PVSS + some persistency solution (Oracle, MySQL?) Can everything be done in PVSS? Should some of the GUI’s be programmed in another language? Make a decision by the end of this summer.

· Design the schema of the database (doctoral student).

· Workshop. To be organized with other experiments. Present our aims, requirements and ideas.

2. Prototype. Have something by spring 2004.

3. Implementation (evolution of prototypes) & tasks.

· Export of components from the database into PVSS (Portugese girl).

· Graphical navigation tool for identification of components (Russian 1)

· Partition editor (Russian 2)

As preparatory work a note should be written (by EvH?) describing the components of all subdetectors (summarize the electronics chapters of the TDRs). See what the common architectural components are (silicon is the same, calo and velo are different (one more level), outertracker has a TDC, muons are slightly different using a physical to logical translation); how much of this is covered by the JCOP framework. What is the influence on the schema, which should be subdetector independent? Study the impact of the common L1 board.

Tasks

The schema

1. General research that will have to be done prior to the design of the schema as these questions may have an impact on the design or the technology:

· How can we manage schema evolution (it should be possible to add rows & columns without rewriting tools – see with Oracle support how to achieve this).

· What is the impact on the schema of different versions of configurations? Are there tools we can use? Look at the interface between PVSS and the conditions database and use that (made by Portugese people).

· Do we want to store the binaries (for FPGAs, programs to run on farms and credit card PCs) as blobs, or references to a file, or the code? How will this integrate with CMT and CVS (the source code management system).

2. General requirements on the schema:

· Everything in the control system has to be stored in the database. Components are described in PVSS, which has to be exported to the database. So the schema must follow the structure as set up by PVSS at least for the controllable items.

· The database will contain static and dynamic (“recipes”) configuration data. Static data do not change often (components and their description, hardware addresses, location, links between them). Recipes are dynamic configuration data for a device. They may change frequently (alarm limits, hardware settings, voltages, activity dependent parameters). Any module specific data will have to be attached to it (via a link to a separate table per module type?)

· The schema has to be optimized for navigation.

3. Navigability.

· Part of the schema will enable navigation around the system and to setup the DAQ. (Routing tables will be calculated from the database according to a partition definition corresponding to a certain activity).

· The navigation should be generic, i.e. independent of the subdetector. E.g. the front end architecture is the same: the front end chip is connected in multiplex mode to a front end board which is connected to the DAQ. An exception is the calorimeter where channels are directly connected to a front end board (see Olivier Callot). Much of this is done in PVSS by the JCOP project. This structure should be preserved.

· Navigation should expose the dataflow, what board is connected to what.

· All physical connections (cables) should be described. This is done only once, after the cable can be there or not. The control system is not affected by the cabling.

· All geographical attributes (size, width, location) of a component should be stored. Relative positions will be in the conditions db after alignment run.
4. Description of boards.

· How to represent internal components of boards (TTC)

· Look at how Alexias is doing this in PVSS

5. How to implement partitioning and activities in the database, with links to module specific parameters. Put in hardware links, this TTC sits in that board, which is connected to this readout unit, connected to that switch. There should be minimum partitioning units (predefined partitions).

6. Describe spares.

· Unconnected modules with serial numbers

· Define what board type it is.

· Fully described

· History of module should be kept, when was it repaired etc.

· There should be tool to swap spare with used

· Recipes are only attached to used modules, but they are automatically applied when a spare is swapped with a used

7. How to implement the interface to the conditions database?

· The control system will reinitialize from the configuration database, so running conditions may have to be retrieved.

· Parameter feedback from the conditions database into the configuration database (store the state of the system)
Tools

We require navigational, mass population, extraction and data representation (graphical and hierarchical) tools:

1. Extraction tool. All components in the database should be extracted and translated into a PVSS datapoint structure. A procedural interface (api) should be developed to extract data (recipe) for each module given a partition and an activity (on server side with RPC or distributed for each controls PC).

· Basic need: which partition, which activity, start run

· Is it appropriate to translate everything to a datapoint?

· How to describe connections with datapoints?

· May need more flexibility at another level.

· Is performance an issue? (study caching of frequently used recipes)

· Scalability, hierarchy? (solved by having many controls PCs)

· Can we test this in the testbeam? (when real modules are used)

· Implementation in C++ + PVSS scripts?

2. A partition editor. GUI to retrieve, modify, edit and store

· Determine the language to write this in, probably not PVSS scripting, perhaps Java?

· There should be predefined default partitions (LHCb=entire detector, VELO=only velo, RICH1=rich1 etc.).

· Start from channels, connect to chips, connect to boards, connect to readout units, connect to switches. Tool should suggest default connections. Need rubberbanding functionality with negative selections (everything except this wafer).

· Define what readout components you need to read out via a datalink

· Arbitrariness in farm configuration: for a certain partition need n subfarms.

3. Graphical/navigation tool. Should enable to locate a module.

· A graphical representation of the system connected to tools: zoom into a subdetector, eg the velo, draw the wafers, take one and connect it to a board.

· Tool should be implemented in PVSS as it needs to know the status of the components.

· Slow controls and positions: module sits in crate, which sits in a rack, which sits in a barrack. (When a crate trips or when there is a power cut in a barrack, which module(s) do you need to reinitialize?)

· Given a module, where is it? (locate one in 2000 cpus when it fails)

· Prototypes will help us understand the how navigation works

· Identify a channel, find out the FE chip its connected to, where is it in the geometry, to configure it for the high level trigger need x,y,z positions of channel, which can be found from the conditions database

4. Tool to populate the database.

· A scripting interface will be required (to add 100 boards conveniently). How to describe links in scripts?

· Can the graphical tool be used to populate the database?

· Tool should allow definition of a specific module using standard components: it is part of the calo system, has 5 FPGA boards, 1 ITTCRX, 1 credit card PC, uses SPECS. Should be able to aggregate the basic layout of tables.

5. A tool to check the consistency of the database:

· Locally (partitions)

· When adding rows or columns to the database, it should be consistent

