Configuration database version control suggestions

Clara Gaspar, Beat Jost and Eric van Herwijnen

July 16, 2003

CMT/CVS approach

In the offline world, software versioning is handled by CVS (Concurrent Versions System). Applications (whose software is managed by CVS) are configured and released using CMT (Configuration Management Tool).

For CVS, the minimal entity that can be versioned is called a package. There are different kinds of packages (application, component library, link library etc.). Simplified, a package consists of classes or subroutines.

A package has a version number with the following convention: “v<version number>r<revision number>p<patch number>” or “v<version number>r<revision number>d<date>”. Versions with the same v number should be considered compatible. CMT uses the v-r format of these version numbers.

The four main actions are create, use, modify and release:

1. When a package is first created, it is imported to the CVS repository.

2. To use a package, it needs to be checked out of the repository, by using the name of the package and its version number. The user obtains a local read/write copy of the software.

3. If modifications are made, a new version is committed to the repository. The packaged is tagged with its version number, but it could be with any name. Others can use software that is committed. It is impossible to overwrite anything in the repository; one can only add new versions.

4. An application can use many packages each with a specific version number. They are declared in a requirements file which is used by CMT to create a make file.

When the software is in a state in which others can use it, a release is made. This means all the files are moved to a central read-only accessible disk area. Releases contain compiled executables that can be used without checking out the source code.

Configuration database

Although a database is not like program source code, some of the ideas of the offline version control practice can be applied to the configuration database.

The control system consists of a hierarchy (a tree) of nodes. This tree is implemented in PVSS as a view. Devices are connected to the nodes at the extremities of the tree, as shown in Figure 1.

[image: image1.jpg]P Vi Device Editor & Navigator

Device Editor & Navigator

[y Control System 2
WieneiPS
|_eictest |
Stationt
Station Tracking
StationTHY_boardd1_chd
StationlHY_board01_chd
StationTHY_boardd1_chD.
StationlHV_boardd1_chD
davices Station1H boardd1 _ch)
StationTHY_boardd1_chD
StationTHY_boardd1_chD
StationTHY_boardd1_chD
StationTHY_boardd1_chD
StationTHV_board01_chD
StationTHY_board01_chd
Station] GasHVOK
Station] GasOK
Station | MWPCPressure

+Station] Triacer =
< 3

nades

Figure 1 PVSS Control hierarchy

In the PVSS Framework, the Device Editor and Navigator can be used in Editor or Navigator mode. The Editor mode allows changes to be made to the PVSS configuration (the “scratch” area referred to in Configuration Database Use Case document). These changes can subsequently be saved in the database. We assume multiple users can be working on the same database at the same time.

The configuration database will contain static (the datapoint structure representing the hierarchy of devices shown in Figure 1; the “erictest” control system is a logical view on a number of stations) and dynamic (the recipes belonging to a device) information.

The static configuration information will be used to bootstrap the control system. The dynamic information will be values of parameters that can change depending on the activity of the detector (physics run, calibration run, cosmics run). There is a one to many relationship from static to dynamic configurations.

The static information corresponds to the hardware of the detector. This will not change often, and when it does, it will involve major hardware changes, such as re-cabling and moving of pieces of equipment. The user requirements document for the configuration database project defines a “scratch” area that can be used to backup temporary hardware configurations. There are however, several arguments to introduce full versioning of the static information:

1. There are cases where the difference between static and dynamic is unclear. For example parameterizations of algorithms and addresses of hardware.

2. The overhead of introducing versioning is probably not very large.

3. The handling of static and dynamic information will become symmetric.

Version numbers

The version number of the static configuration should clearly appear on the PVSS panels (see

[image: image2.jpg]Device Editor & Navigator

[y Control Syster
WienePS

~Stationt
~Station Tracking
+Station 1 Trigger
+StationInfra
+Station2
+Station3
~Stationd
+StationdTracking
+AD
Accelerator
~CAEN
~Station HVS Y1527
+Station1HY_boardd!
+Station1HY trigger
+Station2HVS Y1527
+Station3HVS Y1527
+StationdHVSY51527
DM

@ Editar
 Navigator

—

Device Label: erictest

Device Narne: Systerni erictest

Parent Label

Default View Configuration Panel

Create | Delete | List All| Modify Label | Modify Panel List [Config DE Siaficinfo | Confiy DB Recipes

Configuration Database Tool - Static Information

Device name: [Systemierictest
Device type: | _Fwiews
Version nr: Ihcbv
Load! static config Cormpre current confi | Save current confio|
Chengeversion nr st h with last loelelindo | in cby

Device Panels: [fovieutonfigperaule

root = =
15:49:17 11072003

ALARMS EVENTS SYSTEM HELP

Figure 2 Static versioning of the controls tree
Figure 2).

When no version is loaded, the framework labels both static and dynamic data as version 0. In the figure, the version number of the currently loaded static configuration is lhcb.v1. In editor mode, typing it in the box and clicking the button “Change version nr” can change the version number of the currently loaded static configuration. However, the new version is only saved in the database after clicking the button “Save current config in db”.

We propose version numbers have the format “stem”.”v”x (e.g. lhcb.v1).

All recipes belong to a specific version of the static configuration. So in addition to their own version number, they also are linked to the appropriate version of the static configuration. In the database there is a separate table per recipe.

Load a configuration from the database

1. Static information.

· A particular static configuration can be loaded into PVSS by selecting a device in the device tree and by clicking the button “Load static config from db” (see Figure 2).

· This is equivalent to the cvs checkout function.

· Configurations are loaded from an existing node down, i.e. if the top node is selected in a view, the static configuration of the entire tree below it is loaded. Any structure already existing underneath the node is overwritten.

· The configuration is identified by the name of the node, and the version of the configuration or the date. The selection is made through the dialog box shown in Figure 3.

[image: image3.jpg]Configuration Database Tool - Load a static configuration from the db

Device name: Systemerictest

Version et El

Loadversion of dete: [28 february 2007 |

Load

Figure 3 Loading a static configuration from the db into PVSS

2. Dynamic information.

· Recipes can be loaded like static configurations, i.e. from a selected node down, by giving the node name and the version number or the date. Since recipes are linked to a particular static configuration, only those valid for the currently loaded static configuration can be chosen (see Figure 4); only the fields with the scroll arrows can be selected.

[image: image4.jpg]Configuration Database Tool - Load a recipe from the database

Device name: Systernierictest

Static configuration version | Thcb 1

Staticconfiguration of dete: [26 februery 2007

Pecipe version nr. Physics v2 =

Recipe of dete: 16 july 2007 |

Load

Figure 4 Loading a recipe from the database
A record is kept in the database of the time when someone loaded a particular configuration, and the userid.

Any changes made by the operator while in Editor mode, will be private only, until they are explicitly saved in the database.

Save a configuration in the database

There is no specific import function, but when a configuration is saved for the first time, all the required tables are created.

1. Static information.

· First give a new version number to the configuration you want to save to the database (see Figure 2).

· Before saving changes to the database, you need to make sure no one else has modified the database before you. Clicking on the button “Compare current configuration with last loaded in db” does this. The result of the update command is a report marking which nodes have been deleted from the database since you last loaded the structure into your PVSS project, which ones have been added, and which ones have been modified. Then the system will prompt if it is ok to merge your changes with the new structure. If this is not possible, you will have to resolve the incompatible changes before proceeding.

· The “Compare current config” function is analogous to the cms update command.

· If necessary, commands to delete and add nodes could be created, but this may be too heavy in this context.

· When the update command gives no error messages, the current structure can be committed via the button marked “save current config in the db”. This is equivalent to the cvs commit command. The save action prompts the user for a comment in a subsequent dialog box.

· For each device, the recipe that is currently active in PVSS at the time of saving, is stored in the dynamic information part of the database. It is given the same name as the static configuration and version nr. 1.

2. Dynamic information.

· The procedure is identical except the “Config DB recipes” tab is used.
Release (Make a configuration public)

As there is no compilation involved in the configuration database, this step seems redundant. It could, however, be used as an extra step to indicate that a given configuration has reached an “official” status, as opposed to some modifications that were committed for others to test.

In this case we would suggest simply adding a “released” flag to the configuration name in the database.

