Chapter 10 Validation of the CIC_DB_lib

Chapter 10 Validation of the CIC_DB_lib

This chapter describes the different tests carried out to validate the object layer, namely the CIC_DB_lib (C code) and its two bindings (PVSS and python) and the GUI layer too.

The first part describes common tests to verify that the functions of the CIC_DB_lib work correctly. It includes tests on the bulk collect insert and update and on the automated updates further to a change in the connectivity or an update of the status of a device. The second part shows how the HCAL connectivity has been inserted using CIC_DB_lib and how modules could be configured using the PVSS CIC_DB_lib to get connectivity information. The third part explains how a slice of the VELO connectivity has been inserted using the Python CIC_DB_lib. The VELO connectivity includes the microscopic level too. So we could validate the functions related to inserting and querying microscopic view. Finally I present some tests to simulate the device history. In the tests, updating wrongly a status of devices was performed such as updating the status of a destroyed device.

10.1 Validation of the insert and update statements

10.1.1 Test Frame

The different tests have been carried out using C, python and PVSS programs. A C program has been implemented to verify the behavior of queries when run concurrently.

Some of the scripts used for tests are stored on the CERN network at: dfs (G:\Experiments\Lhcb\group\TFC\CICDBproject).

The main points I wanted to check were:

· If the functions built with their interfaces (Python + PVSS) are doing what they are supposed to do.

· The behavior of the functions (especially update, delete and insert) in case of user errors or constraint violations.

· The behavior of some functions (insert and update functions) when run concurrently.

· The behavior of functions when performing bulk inserts or updates.

· The automatic updates of information related to paths when there is a change in the connectivity table (insert, delete and update a link).

Finally the CIC_DB_lib and its interfaces have been validated by their use in different projects (HCAL, VELO, DAQ and TFC).

10.1.2 Multiple insertions

The TFC and DAQ connectivity presented in Chapter 5, has been inserted using functions included in CIC_DB_lib. I have written a C application for each subsystem.

The following functions have been used:

· InsertMultipleDeviceTypes to insert many device types in one go;

· InsertMultipleFunctionalDevices to insert many functional devices;
· InsertMultiplePorts to insert many ports;
· InsertMultipleSimpleLinkTypes to insert link types;

· InsertMultipleMacroLinks to insert links between devices.
A simple way to verify that the insertions were correct in terms of number of rows and right data included in the right place (included NULL values) was to query them using functions get information about a device type row, a device row, a port row, a link type row and link row. The same type of tests was performed for the update and delete based functions. So with this way of doing, the user can check that what he has inserted was what he wanted.

I also faked some errors such as links starting from an already used portid or ports belonging to a non-existent functional device. These tests were meant to verify the database constraints and the error handling.
10.1.3 Memory leak

The CIC_DB_lib includes functions such as getting the paths between two devices or inserting many rows in one go (the initialization of the cache was properly done), which perform a lot of memory allocation. Using the Valgrind tool [1], one could verify if there are memory leaks and solve the problem. In my case, I could find some blocks that were not released.

The methodology used was to write an executable which calls these functions and then call

valgrind with –tool=memcheck --leak-check=yes <name of the executable> to detect memory leaks.
10.1.4 Verification of the autonomics features
Some of the functions to update information have been tested when creation the dhcp config file (Chapter 9). Nodes and links have been excluded.

I have also verified that after:

· updating nodeused, or after updating a link attribute such as bidirectional_link_used, linktypeid, lkused, system_name part of the TFC or DAQ, the updates of PATH_LINES, ROUTING_TABLE and DESTINATION_TABLE were performed.

· deleting of a device, of a port and of a link which happens in the DAQ or TFC system, the PATH_LINES, ROUTING_TABLE and DESTINATION_TABLE were updated dynamically;

· inserting a link, PATH_LINES, ROUTING_TABLE and DESTINATION_TABLE were updated dynamically;

· inserting or changing the status of a device was automatically reported in the DEVICE_HISTORY (including the components of a board if any);

· changing the status of a device was performed in a coherent manner (the required updates to other tables were made, such as updating the status of the board components if necessary);

· swapping two devices was allowed (same type and same connectivity).

For inventory/history information updates and deletions, giving incoherent input parameters have been tested to verify that the changes were not performed and nothing was blocked.

10.1.5 CDBVis

CDBVis is another way to validate CIC_DB_lib as it uses insert and update based functions. It permits to verify that all the links have been inserted. Referring to Figure 1, the output connectivity of the VELO_REPEATER_BOARD_00 has not been inserted yet as the last type of devices in any subsystem dataflow is the TELL1 boards.

[image: image1.jpg]=il

Fie Eii View Creste Modfy Delete Visual Test Help

vy Bl ool e[-[M[] cowa|&[[a[[= 5[=[F 0[]

LHcb System Treevin: =i

MUON
ot
RICH
RICH!
RicH2
st
e
™
B veLo
) Device types
VELO_FLANGE
VELO_HVBRID_R
VELO_LOFE
VELO_L1FE
VELO_LONG_KEPTON
5} VELO_REPEATER_BOARD

T iew only inks of this inktype:

I |

Information
e ey VELO_FEED)| FLANGE_00
active 0
description very sensiive device
device_funclion nane VELO RS ARD_DD
deviceid 1380405
devicename. VELO_REPEATER_B.
devicetype VELO_REPEATER B.
function_name
hwtype.
locafion DUSL23BATE
rlrofiput 0
Rhrofautput 0
node 0
nodeused 1
promiscuous_mo... 0
responsible
rgbcslor 1,0,250)
serisit XDV_REPEATER_EO.

user_conmerts

i} | — _l_I
T e VELO [i00% [Crestionfiode eghbour Vew
@ start| (5] Inbox - Micrasoft ... | £ word_autonomic v3 | £ TrC | oy pocumerts | 1] lna_chap1ova.doc... | B CoiwinTisystens... || B cdbvis - Configur-.. [Sy55°3)0] Yo @ &l 5 SR O aize am

Figure 1. Example of incomplete connectivity for the VELO_REPEATER_BOARD_00.

Part of the MUON connectivity has been inserted in the CIC DB using CDBVis. On the opposite, it was a good way to test and debug CDBVis too. For instance, we found bugs when viewing paths (not the correct last node).

10.2 Use of CIC_DB_lib and its PVSS binding by the CALO sub-detector

In Chapter 2, section 2.1.3, there was a need to get the connectivity between devices to configure the modules. The connectivity of the HCAL has been described in Chapter 2, section 2.1.3. The next two subsections explain the use of CIC_DB_lib to insert and query connectivity information.

10.2.1 Inserting the connectivity in the CIC DB

Configuration information is used to get the SPECs addresses of the hardware and connectivity information will give the DAC board name, INT board name and the FE name which drive the given channel name (not direct connection).

Text files exist which include device types, devices and links between devices. Thus I could insert the connectivity with CIC_DB_lib. Around 14,000 links were inserted. There are 1488 channels, 1488 PMTs, 52 LED1s, 52 LED2s, 8 DACs, 4 INTs, 4 FEs and 4 Controls PCs.

Inserting the connectivity is done as follows (order to respect the database constraints):

1. Insert all the device types of the system (HCAL_CHANNEL for instance).

2. Insert all the functional devices with their serial nb (HCAL_CHANNEL_001).

3. Insert all the ports group by functional devices.

4. Insert all the link types (data_signal)

5. Insert all the links between (functional device, port nbr)

The insertion was successful as we check that the number of devices sorted by types, the number per ports and links were the same as the numbers in the text files.

However it is up to the user to ensure that all the devices, ports and links have been inserted. There is no way to know in advance how many devices should be inserted per subsystem for instance.

10.2.2 Getting the connectivity between 2 devices

The CALO group uses the PVSS binding of CIC_DB_lib.

Use case 1 (Chapter 2, section 2.1.3) can be solved by getting the paths between a channel and a DAC, a channel and an INT and finally between a channel and a FE board. In Use case 2 and use case 3, the connection involved is point-to-point connection as a channel is directly linked to two LEDs and to a PMT. Their requirement was to get the connectivity between all their channels and DAC, INT and FE in less than 100 s.

To respond to their requirements, I suggested them to use PVSSGetDetailedConnBetweenDeviceDevType. This function allows getting detailed connectivity between a given device and a device type.

Example of usage (PVSS script):

dyn_string nfrom_list, pfrom_list, nto_list, pto_list, lkinfo_list, devicename_list;

dyn_int pwayfrom_list, pwayto_list, pid_list, lkpos_list,deviceid_list;

dummy=PVSSDBConnexion(dbname,login,passwd,errmess);

//Get all devices of type HCAL_DAC

dummy=PVSSGetDeviceNamesPerType("HCAL_DAC",devicename_list, deviceid_list);

if(dummy==0)

{

t1=getCurrentTime();

for(i=1;i<=dynlen(devicename_list);i++);

{

devicename_ch=devicename_list[i];

if(i==1)

{

//Get the connectivity between a given HCAL_DAC and channels
dummy=PVSSGetDetailedConnBetweenDeviceDevType(devicename_ch,"HCAL_CHANNEL",1,nfrom_list, pfrom_list, pwayfrom_list, nto_list, pto_list, pwayto_list, pid_list,lkpos_list, lkinfo_list,1,0, errmess);

}

else

{

if(i==dynlen(devicename_list))

dummy=PVSSGetDetailedConnBetweenDeviceDevType(devicename_ch,"HCAL_CHANNEL",1,nfrom_list, pfrom_list, pwayfrom_list, nto_list, pto_list, pwayto_list, pid_list,lkpos_list, lkinfo_list,0,1, errmess);

else

dummy=PVSSGetDetailedConnBetweenDeviceDevType(devicename_ch,"HCAL_CHANNEL",1,nfrom_list, pfrom_list, pwayfrom_list, nto_list, pto_list, pwayto_list, pid_list,lkpos_list, lkinfo_list,1,0, errmess);

}

}

}

10.2.3 Verification of the execution time requirement

This script has been executed on a Windows machine and on a Linux machine. It returns the detailed paths between each DAC and a CHANNEL. The Linux and Microsoft Windows Server 2003 machines have similar characteristics which are Intel Xeon 2.8 GHz and 2 GB of memory.

	Try
	Execution time

(s) C code

Windows
	Execution time (s) C code

Linux
	Execution time (s)

PVSS code

Windows
	Execution time (s) PVSS code

Linux

	1st try
	5.29/6.02
	4.87/5.38
	6.62
	6.35

	2nd try
	4.45/5.18
	4.45/4.96
	7.52
	5.29

	3rd try
	4.44/5.19
	4.32/4.83
	6.17
	5.33

	4th try
	4.44/5.17
	4.30 /4.81
	6.58
	5.10

	5th try
	4.5/5.23
	4.38/4.81
	6.12
	5.07

	Avg
	4.62/5.36
	4.46/4.95
	6.60
	5.42

Table 1. Execution time of the script.

In Linux, the C code is executed faster than in Windows (a few ms faster).

It is because PVSS is faster on Linux. In both cases, the first call to GetDetailedConnBetweenDeviceDevType consumes 90% of the execution time in Linux and 86.2% in Windows. This is because the first call loads the connectivity table of HCAL in memory (roughly 14,000 links). In the query, there is a union statement to revert bidirectional links. And the select query itself involves 3 joins (FUNCTIONAL_DEVICES, CONNECTIVITY and PORT_PROPERTIES tables). The other calls do not perform this operation as the connectivity table (of the HCAL is already loaded into memory).
So it depends on two factors, the load on the database and the load on the network.

The database (Oracle 10g) is a central one accessed by hundreds of users which can run heavy processes. The load on the database is already quite heavy. The result of the tests was more or less the same (the worst result I got was 20 sec which is still less than 100 sec). However it is important to note that the CIC DB will be installed in the pit and accessed only by the LHCb group.

The PVSS script is also executed faster in Linux than in Windows.

However the requirement is satisfied with the current performance (it is far beyond the 100 sec limit). Thus the functions which get the path between two modules and between a module and a type of module could be validated.

10.3 Inserting and querying the VELO connectivity

In Chapter 2, in section 2.5.2.2, a slice of the VELO connectivity from a hybrid to a TELL1 board has been presented. Each hybrid has the same connectivity schema. A hybrid is connected to four short kaptons (similar to cables). A short kapton is connected to a long kapton which is connected to a port of the feedthrough flange (similar to a patch panel). A port of this device is connected to a port of a repeater board via interconnects (also like cables). This repeater is connected to one TELL1 board, to a control board and a temperature board. A control board drives 6 hybrids and a temperature board, 16.

10.3.1 Using the connectivity for debugging purposes

The VELO group wants to save the connectivity for debugging and management purposes. If the long kapton VELO_LGKAPTON_00 (for instance) fails, they want to know all the devices affected by it.

Unlike other subdetectors, they want to know which beetles (silicon chips located on the hybrid) are associated to a given driver mezzanine (which sits on a repeater board).

So there is a need to describe the internal connectivity of the hybrid and the repeater boards as explained in Chapter 2. The internal connectivity of the feedthrough flange has also been stored as mentioned in Chapter 2.

10.3.2 Inserting the macroscopic and microscopic connectivity

The connectivity of the VELO will be inserted into two steps. The first step is to insert the macroscopic connectivity from the hybrid to the repeater board. The same functions have been used as for the HCAL.

The second step is to insert the internal connectivity of boards (hybrids, repeater boards and feedthrough flanges). The order of inserting the microscopic connectivity is similar to the macroscopic one. The only difference is there is no need to insert the ports of a microscopic device. The Python code (written by the VELO group based on my advices) below shows an example how to insert the 4 driver mezzanine cards of the repeater boards. It also shows how to insert the micro links of these 4 driver mezzanine cards.

#microscopic devices making up one 'slice' of the VELO

#DRIVER_MEZZANINE (inserting the 4 driver mezzanine cards of the #repeater board)
cfDB.InsertMultipleBoardCpnts('VELO_DRIVER_MEZZANINE_0','VELO_DRIVER_MEZZANINE',1,'VELO_REPEATER_0','4TVLAURPTA0010','','rshade','0_TOP_LEFT_0_J3','',1,0)

cfDB.InsertMultipleBoardCpnts('VELO_DRIVER_MEZZANINE_1','VELO_DRIVER_MEZZANINE',1,'VELO_REPEATER_0','4TVLAURPTA0011','','rshade','0_TOP_LEFT_0_J5','',0,0)

cfDB.InsertMultipleBoardCpnts('VELO_DRIVER_MEZZANINE_2','VELO_DRIVER_MEZZANINE',1,'VELO_REPEATER_0','4TVLAURPTA0012','','rshade','0_TOP_LEFT_0_J7','',0,0)

cfDB.InsertMultipleBoardCpnts('VELO_DRIVER_MEZZANINE_3','VELO_DRIVER_MEZZANINE',1,'VELO_REPEATER_0','4TVLAURPTA0013','','rshade','0_TOP_LEFT_0_J9','',0,1)

#Get the deviceid of VELO_REPEATER_TEST, a macroscopic component

devid=cfDB.GetDeviceID_devicename("VELO_REPEATER_0");

#Get the portid which corresponds to (deviceid,port_nbr, #port_type,port_way) There is a bijection between portid and these #parameters

#From REPEATER input to MEZZANINE (insert the micro links between #repeater input and mezzanine)
portid=cfDB.GetPortID_portinfo(devid,"0","data",1);

cfDB.InsertMultipleMicroLinks('motherboard','VELO_DRIVER_MEZZANINE_0',portid,0,'mixed_data',0,1,0)

portid=cfDB.GetPortID_portinfo(devid,"1","data",1);

cfDB.InsertMultipleMicroLinks('motherboard','VELO_DRIVER_MEZZANINE_1',portid,0,'mixed_data',0,0,0)

portid=cfDB.GetPortID_portinfo(devid,"2","data",1);

cfDB.InsertMultipleMicroLinks('motherboard','VELO_DRIVER_MEZZANINE_2',portid,0,'mixed_data',0,0,0)

portid=cfDB.GetPortID_portinfo(devid,"3","data",1);

cfDB.InsertMultipleMicroLinks('motherboard','VELO_DRIVER_MEZZANINE_3',portid,0,'mixed_data',0,0,1)

#From MEZZANINE to REPEATER output (insert the micro links between # #mezzanine and output repeater)
portid=cfDB.GetPortID_portinfo(devid,"0","data",2);

cfDB.InsertMultipleMicroLinks('VELO_DRIVER_MEZZANINE_0','motherboard',0,portid,'mixed_data',0,1,0)

portid=cfDB.GetPortID_portinfo(devid,"1","data",2);

cfDB.InsertMultipleMicroLinks('VELO_DRIVER_MEZZANINE_1','motherboard',0,portid,'mixed_data',0,0,0)

portid=cfDB.GetPortID_portinfo(devid,"2","data",2);

cfDB.InsertMultipleMicroLinks('VELO_DRIVER_MEZZANINE_2','motherboard',0,portid,'mixed_data',0,0,0)

portid=cfDB.GetPortID_portinfo(devid,"3","data",2);

cfDB.InsertMultipleMicroLinks('VELO_DRIVER_MEZZANINE_3','motherboard',0,portid,'mixed_data',0,0,1).

This python code below shows how to insert the internal connectivity of the feedthrough flanfge.

#FEEDTHROUGH_FLANGE(insert the internal connectivity of the #feedthroughflange)
for i in range (1,20):

devid = cfDB.GetDeviceID_devicename("VELO_FEEDTHROUGH_FLANGE_0");

portid1 = cfDB.GetPortID_portinfo(devid,"%s" % i,"data",1);

portid2 = cfDB.GetPortID_portinfo(devid,"%s" % i,"data",2);

cfDB.InsertMultipleMicroLinks('motherboard','motherboard',portid1,portid2,'mixed_data',0,1,1)

10.3.3 Getting the connectivity between VELO devices

The same set of functions is used to query paths between devices as in the HCAL such as GetDetailedConnectivityBetweenDevices which returns the detailed paths between 2 devices.
To get the 4 possible paths (and not 16) between a hybrid and a repeater board, the algorithm to get the paths (the same as used in the HCAL but the input parameters are different) checks if the node to be added in the current path has an internal connectivity. If yes, it checks if a signal arriving at a given input can go out from the given output using CheckInternalConnectivity. This function returns 0 (for OK) and -1 for (not OK) given two portids (input and output of the same device). For instance, the input port 1 of the feedthrough flange is not compatible with the outport 2, the function returns -1.

If not, it considers any combination of (input, output).

The VELO connectivity allows testing the functions related to microscopic devices and connectivity.

10.4 Simulation of device history

10.4.1 Introduction

The real inventory information has not been inserted into the CIC DB so far, since the history of a device begins with the start of the LHC.

However in CIC_DB_lib, there is a set of functions which enable to:

· Update the status of a hardware device or a functional device;

· Get the history of a hardware or functional device, filtered by date;

· Get the current status of a hardware or functional device;

· Get all the functional or hardware devices which are in a given status filtered by subsystem.

These functions are included in the PVSS binding but not in Python as these functions should be used from PVSS. It is part of the hardware monitoring.

The date format is the same one used in all the functions and is equal to YY/MM/DD/HH24/MI/SS.

10.4.2 Test patterns

Each function related to inventory information has been tested individually using the use cases defined in Chapter 4, section 4.3.4.

The following tests have been performed:

· Update the status of a hardware device IN_USE to SPARE with a replacement and with no replacement;

· Update the status of a hardware device IN_USE to TEST with a replacement and with no replacement;

· Update the status of a hardware device EXT_USE to IN_USE;

· Update the status of a hardware device IN_REPAIR to DESTROYED;

Also some impossible patterns have been tested to verify that no update was done:

· Update the status of hardware device DESTROYED to SPARE;

· Update the status of a hardware device IN_USE to SPARE with a replacing hardware IN_USE;

· Update the status of a hardware device IN_USE to TEST with a test board not free;

· Update the status of a hardware device EXT_USE to IN_USE, and the functional_device is already IN_USE.

Functions based on select have also been tested.

Example of code:

//Get the status of functional device "TEST_BOARD_1"

res2=GetFunctionalDeviceStatus("TEST_BOARD_1",resultList ,ErrMess);

//Get the status of hw device "CC21PP78"

res2=GetHWDeviceStatus("CC21PP78",resultList , ErrMess);

//Replace the hw device which occupies the functional device //“ttcrx_1000” with “CC21PP78" and set the status of the replaced //device to SPARE

res2=ReplaceFunctionalDevice("ttcrx_1000","SPARE","Liverpool_Uni","none","12/55/41/02/05/06","CC22PP78","12/55/41/02/06/06",ErrMess);

//set the status of the hw device which occupies the functional device //“TELL1_Board_77” to EXT_USE

res2=ReplaceFunctionalDevice ("TELL1_Board_77","EXT_USE","Liverpool_Uni","device in test ","11/08/45/10/02/06","none","none", ErrMess);

//set the status of the hw device which occupies the functional device //“TELL1_Board_12” to TEST and replace it with “CC21PP78”

res2=SetToTestUseStatus("TELL1_Board_12","none","06/04/10/12/24/25","CC21PP78","TEST_BOARD_1","06/05/22/12/05/06", ErrMess);

//set the status of the hw device “88XX745P45SS” to IN_USE and it occupies “TELL1_Board_77”

res2=UpdateHWDeviceStatus("88XX745P45SS","IN_USE","none","getting back the hw","12/55/41/02/06/06","TELL1_Board_77",ErrMess);

// set the status of hw device “XX3356UGD” to IN_USE and occupies the //functional device “ttcrx_1000”. This one does not work as “ttcrx_1000” //is already IN_USE

res2=UpdateHWDeviceStatus("XX33356UGD","IN_USE","none","getting back the hw","12/55/41/02/06/06","ttcrx_1000",ErrMess);

res2=GetHistoryOfHWDevice("XX33356UGD",ipaddList,len_array,"none","none",ErrMess);
10.5 Validating the connectivity information

The different functions related to query connectivity information have been tested through different means.

· CDBVis uses functions which give neighborhood connectivity of a device (inputs and outputs) and give all the paths through a device;

· TFC Local control uses functions which return neighborhood connectivity of a device and which return the output port number given a subsystem;

· The CALO project uses functions which return the detailed connectivity between a device and a device type or between two devices.

· The VELO project uses functions to insert the internal connectivity of boards.

10.6 Conclusion

In this chapter, we have described different tests which have been performed to verify and validate the functions of CIC_DB_lib and its two bindings. The tests covered insertion, update and deletion and connectivity and inventory/history information retrieval. There were also some simulations of mistyping in the input parameters or bad behavior of the user as inserting twice a same device, updating the status of a device which is destroyed, swapping two devices which are of different types. The main purpose was to predict the robustness of CIC_DB_lib in case of bad usage.

References

[1] Valgrind, http://valgrind.org/
