Chapter 3 Software architecture
This chapter presents an overview of the software architecture that has been built and integrated in the ECS software architecture. It is 3-Tier architecture, with a database, object and GUI layers. We describe the different layers and discuss the choice of such architecture.
3.1 Outline of the architecture

[image: image1.jpg]Perl scripts
(DNS + DHCP)

Perl DBI

Database Layer : CIC DB (schema + PL/SQL codes)

Figure 1. Software architecture.
Figure 1 represents the 3-Tier architecture which has been implemented to handle the configuration issues. The 3-Tier architecture has the advantage to be more robust and more scalable, changes on one of this layer does not affect the other unless a complete change in the table design or in the API.
The next section explains the 3 layers in more detail.
The GUI layer, via PVSS panels, allows the integration within the ECS system.
The aim of this architecture is to provide the user with the following features:

· Provide a database schema which is complete so that the ECS can find all the information required to configure the equipment properly namely configuration settings, connectivity of a device and history/inventory of the hardware;


Provide a database schema which caters for the whole experiment to permit to reduce the number of tools to be implemented and to make the software maintenance easier;


Provide an efficient schema and a fast PVSS CIC DB interface to allow loading the configuration of all the equipment in less than one minute;


Provide a set of adaptive and autonomic tools to allow reliable and consistent manipulation (insertion, query, update and of the data by non-expert DB users;


Provide a graphical tool to allow navigation through the content of the CIC DB and fault detection such as a device not connected to any devices.

3.2 Description of the 3-Tier architecture
3.2.1 Database layer
All the information regarding configuration will be saved in one single relational database, the CIC DB. It is based on the Oracle technology. The database consists of two parts:
· A common part to the 4 experiments at the LHC, which contain information about configuration parameters of devices and the hierarchy of devices. The schema and PL/SQL scripts are provided by the CERN PVSS Support group. To make their design, they have collated all the use cases and requirements from the 4 experiments.
· A part specific to the LHCb experiment which contains the connectivity of the subsystems and history/inventory information. It was my work to make the design and to implement PL/SQL codes. There is one PL/SQL package which generates and updates routing and destination tables and a set of some PL/SQL functions which were used when the SQL queries were to complex (especially regarding equipment management).
To ensure consistency between the two parts, the name of the modules is the same. The two parts are independent. There is no direct communication between them. The only way to do so is to use PVSS panels. This was the choice of the ECS project leader.
The database schema of both parts is described in Chapter 5. The implementation of the PL/SQL package to create the routing and destination tables and other PL/SQL codes is described in Chapter 6.

3.2.2 Object layer
This layer is the core of 3-Tier architecture as it links the two other layers. It has knowledge of the runtime values and is aware of the database structure.
The object layer is composed of three parts (referring to Figure 1):

· The PVSS scripts provided by the CERN PVSS Support group which allows manipulating data related to the configuration parameters (saving/loading a configuration). It is a PVSS library which communicates to the database layer via OCI. This tool is described succinctly in Chapter 7.
· The CIC_DB_lib is a C-library which uses OCI as a DB interface and which provides autonomics features. This library consists of a set of functions which permits to insert, select, delete and update information related to the connectivity and inventory/history in a consistent and secure manner. It has based on an API which responds to the need of the CIC DB users. Some of the functions embed PL/SQL functions. Two bindings have been implemented, one in Python using BOOST and one in PVSS using the GEH (Generic External Handler). The detailed implementation of the CIC_DB_lib and its two bindings is explained in Chapter 7.
· The Perl scripts which create the DHCP config file and the DNS set of files (forward and reverse), using the connectivity information. They communicate to the database layer via PERL DBI [1]. The structure of these 2 scripts is described in Chapter 7.
The two last items were part of my work, as they are specific to LHCb.
3.2.3 GUI layer
This layer displays all the data visible to the users. It is the top layer. It also consists of three parts:
· The PVSS panels which are designed by the subsystem group. They are based on functions provided by the PVSS CIC_DB_lib binding and the PVSS scripts related to configuration parameters. These panels allow configuring and monitoring one or a hierarchy of devices. Some examples of panels will be given in Chapter 8.
· The CDBVis graphical editor which allows navigating through the content of the CIC DB (connectivity essentially). It uses the Python CIC_DB_lib binding. This tool enables the users to insert and to view their connectivity. It is also used to detect faulty equipment. It uses wxPython [2] as python graphical module. The outline of CDBVis is given in Chapter 8.
· DHCP and DNS files which are the output of the Perl scripts. These set of configuration files allows verifying that the content of the database is not incoherent. They have been generated using XSLT [3].
3.3 Choice of the languages

In this section, the different choice of the languages and technology used to build the three layers is discussed.
3.3.1 Oracle and PL/SQL
The CIC DB is an Oracle database because there is a CERN Oracle Support group. Also Oracle is widely implemented at CERN. The other possibility would have been mySQL but the range of tools and features was limited compared to Oracle.
PL/SQL has been used to embed complex SQL queries to avoid transferring long statements through the network. It has been also used to generate and create the routing and destination tables because all the SQL executions are performed on the server-side. Thus it avoids loading information from the database, processing them to generate routing and destination tables in the client-side and putting back the results in the CIC DB.

3.3.2 Use of C and OCI, Python and Perl

At LHCb, C, C++ and Python are the most common languages used. There is no use of Java.
The CIC_DB_lib had to be implemented in one of these three languages. It had to be efficient, fast and possible to interface to PVSS (to be integrated in the ECS). As the Python DB interface is built on top of OCI, it is clumsy to implement it in Python. Moreover there is no direct way to integrate Python in PVSS, other than making a binding in C.
So there is C or C++ left. Building a PVSS and a Python binding from a C-library is feasible, but building a PVSS binding from a C++-library would have been tricky as PVSS does not use classes and methods. Moreover the main inconvenient of building a C++ library is memory management (memory allocation for classes) which is not obvious to guarantee. Finally OCCI (best DB interface for C++) [4] is built on top of OCI which the native DB interface of Oracle.
Thus for all these reasons, CIC_DB_lib has been implemented in C with two bindings one in Python, and another one in PVSS and it uses OCI as a DB interface.

Perl has been used to generate the config files because it is a common script language. They can be triggered from some PVSS panels or called from a C code. Python could also have been used.
3.3.3 Use of BOOST, XSLT and GEH

The only way to interface a C-library to PVSS is the GEH. The GEH allows implementing controls libraries. It works both on Linux and on Windows.
To make the Python binding, BOOST has been used. Implementing a Python wrapper directly would have been painful and hard to maintain as the C-library contains a lot of functions. Another possible and simpler wrapper would have been SWIG [5]. But I experienced some problems to convert C pointers which were both in and out parameters in the functions. Finally I decided to use BOOST as it was integrated in the LHCb Offline software environment via Gaudi [6].
XSLT has been used to produce the DNS and DHCP config files. It is flexible and offers a wide range of features (the output can be formatted as needed). As the DNS and DHCP files follow strict syntax containing specific user options, the XSLT permits to check the syntax and to make sure that the user does not provide non compatible options.
3.4 Conclusion

This chapter describes the software architecture implemented to handle configuration. It is 3-Tier architecture. The top layer (via PVSS) ensures the integration within the ECS architecture. The third layer consists of the CIC DB as a database is a persistent technology to store data. The second layer which is the bridge between the two previous offers libraries to manipulate the data in the CIC DB according to the users’ needs.
To make the design of the three layers properly, identifying the users of the CIC DB, collecting the requirements and use cases are essential and will be explained in the next chapter.
References
[1] Perl DBI, http://dbi.perl.org/.
[2] wxPython module, http://www.wxpython.org/.
[3] XSLT, http://www.w3.org/TR/xslt.
[4] ORACLE. OCCI (Oracle C++ Call Interface) Programmer’s Guide, 10g Release 2 (10.2). Osborne : Oracle Press, December 2005, B14294-02, 474p.
[5] SWIG, http://www.swig.org/.
[6] P. Mato et al. GAUDI: Architecture Design Document. LHCb 98-064 COMP.

