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This chapter describes the table schema part of the database layer. It explains how configuration, connectivity and history/inventory information have been modelled using the Entity Relationship Model (ERM) [1] and the use cases. It presents the table schema derived from the ERM. There is also a brief introduction to ERM and deriving the RM with its tables and keys from the ERM diagrams.

5.1 Introduction
5.1.1 Why the ERM?

Besides the ERM, there are different ways of representing data such as object databases. 

Object databases are very useful when the applications accessing the database are written in an object language.  They are also very convenient as there is no need to know SQL to retrieve or store data. However, an object database is directly linked to the object format and data types of the host language. This causes problems when other languages attempt to query data from the store. So an object database is not as flexible as a relational database. 

Relational databases are complex to design as there are different ways to model the same information using the ERM. But they are reliable, and they ensure data integrity. 

In LHCb online context, the use cases have been analyzed to see if there is any need to model data as an object. In fact, all the data could be modelled using conventional types (number, varchar2) that can be stored in a column. There is no need to create special types which could necessitate a design using objects.
5.1.2 Designing the table schema

As I used the ERM, the methodology to build the table schema is standard and as follows:

· Collect and analyze use cases. 

· Apply the ERM to each use case. Determine entities with their attributes and the relationship between entities. Draw ERM diagrams.

· Integrate all the ERM diagrams generating from the three use cases to avoid duplication of information.

· Submit the ERM diagrams to the different users to make sure that the information is complete.

· Define a primary key [1] for each entity and foreign key [1] to express the relationship between entities. Build the table schema. 

· Improve the performance of the database wherever possible. 

5.1.3 Conventions
· Entities and table names are written in bold UPPERCASE. In Figure 42, Figure 50, Figure 62, Figure 63 the table names are written in UPPERCASE.

· Attributes and columns are written in bold lowercase. In Figure 42, Figure 50, Figure 62, Figure 63 the columns are written in lowercase.

· “pk” means primary key and “fk” means foreign key.

· “I” means index and U means unique index with a unique constraint.

5.2. Entity Relationship Model (ERM)

This section gives the principles of the ERM. 
5.2.1 Entity 

An entity type is similar to an object oriented class. It groups a set of similar elements. For instance, in the CIC DB, an example of an entity type is a device, as it has a number of characteristics and a device can be uniquely identified using its serial code. An entity can be concrete as a person or a device or it can be abstract as history or a concept. An entity is represented by a table in a RDBMS.

5.2.2 Attributes

The characteristics of an entity are modelled as attributes such as (for the device entity example) functional name, location, name of the person responsible for this device, serial number or status.

The domain of the attribute specifies the allowed values. For instance the status must be one of the following predefined statuses (‘IN_USE’, ’EXT_TEST’, ’TEST’, ’IN_REPAIR’, ’DESTROYED’). An RDBMS represents an attribute by a table column.

5.2.3 Relationships

A relationship is an association between several entities. Relationships express how entities are interconnected with each other. For example, the relationship “device_link” describes the association between the two entity sets device and link. It is a binary relationship as there are two entities involved. A relationship can involve more than 2 entities. 

In the ERM, a relationship has a cardinality. It sets the number of entities which are related to each other.

There are 4 possibilities:
1. One-to-one: an entity A is associated with at most one entity B, and an entity B is associated with at most one entity A. For instance a boot image is associated with one device type. And vice-versa a device type has at most one boot image.
2. One-to-many: an entity A is associated with any number of entities B. An entity B is associated with at most one entity A. For instance, let us consider the device type and device entities. Many devices can be of the same device type, but a device can be of only one device type.

3. Many-to-one: an entity A is associated with at most one entity B. An entity B is associated with any number of entities A. (this is the reverse of the previous case). 
4. Many-to-many: entities A and B can be associated with any number of each other. For instance, a device can be part of different subsystems and a subsystem has several devices.

The cardinality for a particular relationship depends on the data to model.

5.2.4 ERM diagrams

The Entity Relationship model is represented using diagrams as shown in Figure 34.
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Figure 34. Diagrams showing entites, attributes and relationships.
Entities are represented using rectangles. Attributes of an entity are defined inside the lower partition of the entity rectangle. For instance, referring to Figure 34 DEVICE TYPE is an entity and devicetypeID is an attribute of the entity DEVICE TYPE. 

Relationships are drawn differently according to the cardinality. A dashed line means that the relationship is optional. It is useful for the NULL value.

· One-to-one relationships are drawn as shown in Figure 35 (attributes are suppressed here). A BOOT IMAGE will be used to boot one DEVICE TYPE. A DEVICE TYPE can have at most one BOOT IMAGE (dashed line towards DEVICE TYPE as not all the DEVICE TYPEs need a BOOT IMAGE).
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Figure 35. The drawing convention for one-to-one relationships.
· One-to-many relationships are drawn as shown in Figure 36. A DEVICE can have one or several PORTs. A PORT belongs to one DEVICE.
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Figure 36. One-to-many relationship.
.

· Many-to-many relationships are drawn as shown in Figure 37. A DEVICE can be part of several SUBSYSTEMs and a SUBSYSTEM contains many DEVICEs 
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Figure 37. Many-to-many relationship.
5.3 From ERM to RM

The schema for the relational database (relational model) is derived from the ERM diagrams. The next subsections explain the mapping to perform to go from the ERM to the RM. 

5.3.1 Tables

The relational model uses tables as a basic structure. An entity corresponds to a table, its attributes to the columns of the tables and the domain to the data types. For instance, referring to Figure 34, the DEVICE TYPE entity is mapped to the RM as follows:
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Figure 38. The DEVICE TYPE table.
Figure 38 shows the representation of the DEVICE TYPE entity in RM. The DEVICE TYPE is the name of the table. DevicetypeID (which is of type number
), name and description of (which are of type varchar2) are the columns of the table.

One line of the DEVICE TYPE table (also called tuple) represents an instance of the entity. (142, ODIN, readout supervisor) is a tuple corresponding to a particular DEVICE TYPE used by the TFC.

5.3.2 Keys

Relations between tables which model the association in the ERM diagrams are expressed with keys.

· A superkey is a set of one or more columns which allow a unique identification of a row in a table. For example, in the table DEVICE TYPE, devicetypeID is a superkey. A candidate key is a superkey that is minimal in the number of its columns. 
· A primary key (PK) is a candidate key (there may be more than one) chosen by the DB designer to identify a row in a table. 
· A unique key (U) is also a candidate key which could have been selected to identify a row in a table. A unique key (constraint) allow the DB designer to make sure that each value of the column(s) is unique (no repetition). For instance in the table DEVICE TYPE, there is a unique key on name as shown in Figure 39.
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Figure 39. The DEVICE TYPE table with its key.
· A foreign key is a column (or set of columns) of a table which refers to the primary key of another table. It enforces referential integrity. For instance, the column devicetypeID in the table DEVICE refers to the column devicetypeID in the table DEVICE TYPE. So the row identified by devicetypeID in table DEVICE TYPE cannot be deleted as long as a reference to the column devicetypeID exists in the DEVICE table. Foreign keys can be used to model 1: 1 or 1: N relationships.

1:N relationships (see Figure 36 ) are modelled in the RM as shown in Figure 40. In Figure 40, and Figure 41, the dashed arrow indicates that there is a foreign key between the two columns. The arrow points to the column which is referred to. The primary key of the DEVICE TYPE table (devicetypeID) has been added as a foreign key column in the DEVICE table. In Figure 35, to map this relationship in the RM, a foreign key column devicetypeID has been added to the BOOT IMAGE table. To map a 1:1 relationship into the RM, one of two tables must contain a foreign key column which corresponds to the primary key of the other tables. 
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Figure 40. Representation of the 1:N relationship in the RM. The dashed arrow indicates that DEVICE.devicetypeID is a foreign key to DEVICE_TYPE.devicetypeID.

To model N:M relationship in the RM model, an extra table must be created. The primary key of the two tables must be added as foreign key columns in this extra table.

Figure 37 represents an example of N:M relationship. It is modeled in the RM as shown in Figure 41. The SUBSYSTEM_DEVICE table has been added to model the N:M relationship. Two columns containing the primary keys of the two tables are mandatory. In the example used by the figures the columns are (subsystemID, deviceID) from the tables (DEVICE and SUBSYSTEM).
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Figure 41. N:M relationship represented in the RM. The dashed arrow indicates that SUBSYSTEM_DEVICE.DeviceID is a foreign key to DEVICE.deviceID
5.4 Recipe representation

5.4.1 Entity & relationship

To store the contents of the PVSS datapoints and the structures made by them (recipes), the CERN PVSS Support group have defined the following entities and attributes [2]. The entities and relationships have been defined based on use cases from UC 1 to UC 5 (in Chapter 4).To model a subsystem composed of a hierarchy of devices, two entities are used. A HIERARCHY has a unique identifier, a type (Hardware, Logical or FSM) and a description. An ITEM is a tree of devices. Each child has a single parent. An ITEM is associated with a HIERARCHY.

The RECIPE entity describes generic information of a configuration. It has a name and a description. 

The RECIPE DATA entity describes the content of a recipe. It is a set of parameters and values. Each row of the table corresponds to a pair (parameter (propname), value (propvalue)) It has also alert parameters which are part of PVSS data points. For each parameter, there is the corresponding data type (proptype) as defined in PVSS. RECIPE DATA is associated with a HIERARCHY of devices.

The RECIPE TAG entity attributes a tag to each RECIPE DATA. 
5.4.2 Representation with tables
The tables for storing recipes have been constructed as follows:

[image: image9.jpg]v |

v |

HIERARCHIES ITEMS REFERENCES
PK [hver PK id PK refver
PKFK1I1 |id
htype . E— 5] hver [ a—
descr K221 | parent Fi2 ref_id
valid_from narme valid_from
valid_to type valid_to
detail
description
dpid
RECIPE_TAGS
RECIPE_DATA PK tag.
PK.FK1 | propid
PK [ prop
valid_from
e FKI [ver valid_to
propname
PK [rver proptype
— | has_value
description has_alert
user_created propvalue
date_created alert_type
alet_active
alert_classes
alert_texts
alert_limits

iz |id





Figure 42. Table schema for the configuration data.
The HIERARCHY table contains the different types of hierarchies and their versions. Each hierarchy is uniquely identified by hver, the primary key of this table.

The ITEMS table contains the devices of the hierarchy identified by hver (foreign key). The parent column corresponds to the ID of the parent node in the hierarchy. For instance, the root of a tree has parent=NULL. The name column is the name of the device and type corresponds to the type of the device. For instance, if name is ’VEL0_TELL1_55’, then type is ‘VELO_TELL1’. name and type are the same as stored in PVSS data point and data point types. The id column is the primary key of the table, a sequence of number. The dpid is a foreign key to id column. This column indicates the parent device of name.

The RECIPE table lists all the different recipes which have been created. Rver is a sequence of numbers and is the primary key of the table.

The RECIPE_DATA table contains the collection of parameters of a recipe identified by the column rver and associated with a hierarchy node by the id column. The propname column contains the name of parameter to configure. The propvalue contains the value of this parameter. Proptype stores the type of the propvalue, i.e., if it is an int, a string or a bit, etc. it allows converting the data stored in the CIC DB in the correct PVSS types. The other columns are alarms used in PVSS. Propid (a sequence of number) is the primary key of the table.

The RECIPE_TAG table lists all the different recipe tags. The element parts of the recipe are listed using the propid column (foreign key referencing RECIPE_DATA.propid column).

The V_ITEMS and V_ITEM_NAMES tables are materialized views which display the hierarchy structure in a better structure for PVSS.
5.5 Inventory and history design

5.5.1 Entity & relationship

Using UC 20, there are two entities to distinguish HARDWARE DEVICE and FUNCTIONAL DEVICE. Their respective attributes have been derived using different use cases defined in Chapter 2.
A HARDWARE DEVICE shown in Figure 43 is identified by a serial code (UC 25), an intrinsic property of hardware. It can have a hardware (hw) name (UC20). A hardware device has an hw type (UC 20), a responsible (UC 21) and a current status (UC 25). An hw device has a location (UC20).
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Figure 43. HARDWARE DEVICE model

A FUNCTIONAL DEVICE as shown in Figure 44  has a unique name (UC 23) through all the experiment. It has also a functional type (UC 21). It can have a function (functionID) (UC 13). For instance, a controls PC can host both a DNS server and a DHCP server. A FUNCTIONAL DEVICE can be occupied by at most one HARDWARE DEVICE (UC 20). It is a one-to-one relationship. It has a location (UC 13). If the FUNCTIONAL DEVICE is occupied by a HARDWARE DEVICE, the HARDWARE DEVICE inherits from the functional location. 

A FUNCTIONAL DEVICE can be enabled or disabled (UC 10), i.e. the FUNCTIONAL DEVICE takes data or does not take data. It is specified by nodeused.

A FUNCTIONAL DEVICE can have a promiscuous mode (UC11). This attribute is needed for the DAQ for PCs. This property can be seen a priori as a hardware property. However the value of this parameter is bound to the function. If the hardware is replaced, the value of this parameter will remain the same. 
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Figure 44. FUNCTIONAL DEVICE model.
· A FUNCTIONAL DEVICE TYPE (UC 21) as shown in Figure 45, groups all the FUNCTIONAL DEVICES of the same type. There is a one-to-many relationship from FUNCTIONAL DEVICE TYPE to FUNCTIONAL DEVICE. A FUNCTIONAL DEVICE TYPE has a name (UC 21), a number of inputs (UC 10) and a number of outputs (UC 10). It has also a colour for display purposes (for CDBVis). Input and output numbers are related to the FUNCTIONAL DEVICE TYPE. Indeed the number of inputs or outputs will not change if the hardware is replaced. 
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Figure 45. FUNCTIONAL DEVICE TYPE model.
The HISTORY (UC 30) of a given HARDWARE DEVICE or of a given FUNCTIONAL DEVICE consists of providing the following information (see Figure 46):

· Serial code (UC 20)

· Deviceid (functional device name is then derived) (UC 20)

· Status (UC 22)

· Date of the status change (UC 22)

· Location (UC 22)

· Comments (UC 22)
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Figure 46. History model.

There is a one-to-many relationship from HARDWARE DEVICE to HISTORY OF DEVICE and also from FUNCTIONAL DEVICE to HISTORY OF DEVICE.

The HISTORY OF DEVICE table is common to HARDWARE DEVICE and FUNCTIONAL DEVICE tables. 

FUNCTIONAL DEVICE and HARDWARE DEVICE are entities which are used in the macroscopic view. Two other entities have been designed to handle the microscopic view, HARDWARE BOARD COMPONENT and FUNCTIONAL BOARD COMPONENT. They present some similar attributes to the ones defined for the macroscopic view.
A HARDWARE BOARD COMPONENT (see Figure 47) (UC 28) has a name (UC 29), a type, a responsible (UC 29) and a status (UC 28). It can be replaceable (just the piece of hardware) (UC 28). If it is replaceable, the HARDWARE BOARD COMPONENT has its own serial code (UC 30). 
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Figure 47. HARDWARE BOARD COMPONENT model.

If the HARDWARE BOARD COMPONENT is IN_USE or if the HARDWARE BOARD COMPONENT is not replaceable, then its location corresponds to the HARDWARE DEVICE where it sits. 

A FUNCTIONAL BOARD COMPONENT (see Figure 48) has also a name (UC 30) and a type (UC 29). It is also occupied by at most one HARDWARE BOARD COMPONENT. It is a one-to-one relationship. The location of a FUNCTIONAL BOARD COMPONENT corresponds to the FUNCTIONAL DEVICE where it sits (UC 28). There is a many-to-one relationship from FUNCTIONAL BOARD COMPONENT to FUNCTIONAL DEVICE.
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Figure 48. FUNCTIONAL BOARD COMPONENT.
· A BOARD COMPONENT (FUNCTIONAL and HARDWARE) has a HISTORY (UC 30) (see Figure 49). Usually it is linked to the history of the hardware board on which the component sits. There is a many-to-many relationship from FUNCTIONAL BOARD COMPONENT to HISTORY COMPONENT and also from HARDWARE BOARD COMPONENT to HISTORY COMPONENT.
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Figure 49. HISTORY COMPONENT representation.

5.5.2 Table schema
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Figure 50. Table schema for the history and inventory data.

Figure 50 shows the table schema designed to represent history and inventory. Attributes (created, user_update, author, terminal_name) used for internal management have been added to the FUNCTIONAL_DEVICE_TYPES and FUNCTIONAL_DEVICES tables.

Also FUNCTIONAL_DEVICE.nodeused corresponds to the enabled attribute of the FUNCTIONAL_DEVICE entity.
· The HARDWARE_DEVICES table contains all the hardware devices. The status column represents the current status of the hardware device. The serial code is the primary key of this table. It identifies uniquely the hardware device.

· The FUNCTIONAL_DEVICE_TYPES table contains all the functional device types. The primary key (devicetypeID) is a sequence of number to avoid complex primary keys (see next section for explanations).

· The FUNCTIONAL_DEVICES table contains all the functional devices. The serial code column is a foreign key to HARDWARE_DEVICES.serial_code. The devicetypeID column refers to FUNCTIONAL_DEVICE_TYPES.devicetypeID. The primary key is deviceID, a sequence of numbers and not the devicename (which is a candidate key) for performance reasons. The comparison between numbers is faster than the comparison between strings. The nodeused column is a flag indicating if the functional device is disabled (0) or enabled (1). The status is deduced from the status of the hardware device occupying the functional device. The subsystem column is described in section 5.6.4 It indicates which subsystem(s) a device is part of.  It is used for navigability and partitioning reasons. The node column is explained in the next chapter.

· The DEVICE_HISTORY table contains history of FUNCTIONAL and HARDWARE_DEVICES. The primary key is historydevid, a sequence of numbers to ensure uniqueness. DeviceID refers to FUNCTIONAL_DEVICES.deviceID and serial_code to HARDWARE_DEVICES.serial_code. 

Similar table structures for components have been implemented. The main differences are:

· The HARDWARE_COMPONENTS.snbid column, a sequence of numbers, is the primary key instead of the serial_code. Not all the components have their own serial_code, however they are used in the connectivity.

· The FUNCTIONAL_COMPONENTS.motherboardid column refers to the FUNCTIONAL_DEVICES.deviceID. It corresponds to the location of the component.

· Nodeused and promiscuous_mode have no meaning for a board component. There is no requirement to disable a board component.

Components and devices were separated for two reasons:

· The constraints are different, for instance the serial code is not defined for all the board components. A hardware device is replaceable but not necessarily a board component. It is easier to implement checking functions (check (or declarative) constraints, trigger) to keep consistency. First we tried to implement the constraint using check constraint feature
. If it is not possible, either it is implemented with a trigger or in the application code (as one single library will be used to interact with the connectivity and the history related tables in the CIC DB).

· Initially it was not foreseen to store board components. The need to also store board components appears late (end of 2005). If in the years to come, there is no need for this, the tables can be ignored
. The other part of the database is not affected. 

5.6 Connectivity design

Storing the connectivity consists of describing the DAQ network and other sub detectors topologies. It has two levels, the macroscopic and microscopic connectivity. 

5.6.1 Introduction

Connectivity can be viewed as the set of edges of a graph where a node is a pair (device, port). It uses functional devices. Let us assume there is a link between the functional devices A and B. A is occupied by the hardware A1882TYGG and B by GH6789JKJK. If B is replaced by the hardware GJKKKK789, there is still a link between A and B.

Relating the connectivity to hardware would have implied a change whenever there is a hardware replacement, which is not the case if the connectivity is considered as functional. We could also envisage considering hardware links, i.e. links between two hardware devices. However hardware links are stored in another database for traceability and security reasons as there are hardware devices exposed to the radiation area.
Connectivity consists of describing links between functional devices. A functional link corresponds to physical cables in the reality. However there is no mean to check that all the links have been inserted. It is up to the user to make sure that the all the links have been inserted properly.

5.6.2 Boot image: entity & relationship model

To generate the dhcp config file, the boot image of a PC in the farm or a TELL1 board must be known. The boot image is usually bound to the type of the device. However in some cases, it can be specific to a device. This information has been represented using two new entities, DEVICE TYPE BOOTING (UC 9) and DEVICE BOOTING (UC 9). In both cases, the attributes are shown in Figure 51.
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Figure 51. DEVICE BOOTING and DEVICE TYPE BOOTING models.

There is a one-to-one relationship from DEVICE TYPE BOOTING and FUNCTIONAL DEVICE TYPE. There is only one type of booting image per type, so DEVICE TYPE BOOTING is uniquely defined by the devicetypeID, which is also a foreign key to FUNCTIONAL_DEVICE_TYPE.devicetypeID. The same is true for DEVICE BOOTING.

5.6.3 Partitioning representation

At start up, the operator will select sub-detectors to define a partition. The name of the sub-detectors is already defined as they are also used by the ECS for control and monitoring purposes. A sub-detector can be run independently if only and only if it is connected to an output port of the TFC switch. A sub-detector (used in the ECS) can regroup one or several parts of detector from a TFC system point of view. For our purposes, the partitioning process consists of associating a subsystem to the output port on a switch.

There are two methods to model partitioning.

1. This is the most intuitive one. It consists of defining the entity OUTPUT_PORT with these two attributes output_port_nb and subsystem_name. 

	Subsystem name
	Output_port_nb

	VELO
	0

	VELO A
	1

	VELO C
	1

	VELO
	1

	PUS
	2

	RICH
	3

	RICH
	4

	RICH1
	3

	IT
	4

	TT
	5

	OT
	6

	OT
	7

	OT A
	6

	OT C
	7

	RICH2
	8

	SPD/PS
	9

	ECAL 
	10

	L0CALO
	10

	HCAL
	11

	MUON A
	12

	MUON C
	13

	L0MUON
	12

	L0DU
	14

	L0TRIGGER
	10

	L0TRIGGER
	14

	L0TRIGGER
	12

	L0TRIGGER
	2


Table 9. Example of TFC switch output connectivity.

Table 9 shows the OUTPUT_PORT table following the port assignment described in document [3]. 


With this table, the correspondence between output port and subsystems is immediate.

2. The second method is based on the connectivity. Instead of storing the mapping between output port and subsystem name, we generate the destination table of the TFC switch. In other words, we find which devices are at the end of the TFC chain as described in Chapter 2, section 2.3. As a remark, the last devices are the TELL1 boards whatever the subdetector. Then using the FUNCTIONAL_DEVICE.sysID attribute, we know the subsystem(s) which are associated with the output port. The principle of the destination table and its creation will be explained in Chapter 6.
In this thesis, we have selected the second method because it is more elegant as it does not require creating another table to answer specific queries. Creating the OUTPUT_PORT table is redundant since this information can be derived from the CONNECTIVTY table. Also the second method follows the autonomic approach by reducing human intervention. The concept of destination table is useful in the DAQ system too. 
5.6.4 Subsystem representation

5.6.5.1 Intuitive model 
Getting all the paths that are part of a given subsystem which go through a given device is a requirement for navigability reasons. 
A device can be part of one or of several sub-systems. The intuitive way to model is shown in Figure 52. 
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Figure 52. System table design.

Two new entities need to be modeled, SUBSYSTEM
 and FUNCTIONAL_DEVICE_ SUBSYSTEM. SUBSYSTEM has a name and an ID (a number used to uniquely identify the sub-detetector). There is a many-to-many relationship between SUBSYSTEM and FUNCTIONAL DEVICE. A SUBSYSTEM may include FUNCTIONAL DEVICEs and a FUNCTIONAL DEVICE can be in several SUBSYSTEMs. So to model this association with tables, there will be an extra table called FUNCTIONAL_DEVICE_ SUBSYSTEM table.
The FUNCTIONAL_DEVICE_ SUBSYSTEM table will have many rows as a lot of devices will be included in different subsystems. This table will have two columns (systemID number, deviceID number), where systemID refers to SUBSYSTEM.systemID and deviceID refers to FUNCTIONAL_DEVICE.deviceID.

For instance, consider the following FUNCTIONAL_DEVICE MUON_CHAMBER_01 which belongs to the SUBSYSTEMs MUON_A and to L0MUON. The given device has two entries in FUNCTIONAL_DEVICE_SUBSYSTEM. One row will contain the SUBSYSTEM.systemID of MUON_A and the other one of L0MUON.

If the user wants to select all the devices which belong to MUON, the MUON_CHAMBER_01 will not be listed whereas it is part of MUON. It will not be part of the L0TRIGGER either. So two more rows need to be added to FUNCTIONAL_DEVICE_ SUBSYSTEM ensuring that MUON_CHAMBER_01 is declared as part of {MUON, MUON_A, L0TRIGGER, L0MUON}

All together four rows will be inserted in FUNCTIONAL_DEVICE_ SUBSYSTEM table, one for MUON A one for MUON, one for L0MUON and another one for L0TRIGGER.
However performance is an issue. Programming the TFC switch should be done in less than a few seconds. Also getting paths between devices should be fast (less than 100 seconds for the Calorimeters as mentioned in Chapter 2)

5.6.4.2 Use of prime numbers

To improve the performance, the subsystem concept has been redesigned by exploiting the fact that the number of subsystems is quite low (less than 30). This number will be rather static as it is linked to the detector architecture and changing it would imply many changes in the design of the ECS. It is important to have an idea of the number of possible values that an entity can have as the prime numbers grow very fast.

In this design, we attribute particular numbers to subsystems according to the following algorithm.

Definition: A subsystem A is included in subsystem B if and only if all the devices of subsystem A are part of subsystem B. 

To allocate an ID to a subsystem we proceed as follows:

1. Is the subsystem included in other subsystems?

2. If the answer is no, then we attribute it a prime number as an ID. A prime number can be attributed only once. If the answer is yes, then we attribute it a prime number and we multiply this value with the ID of the subsystem which contains it. 

The principles of this algorithm are illustrated in Figure 53. 
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Figure 53. Attribution of prime numbers to subsystems. The last case is not used in the context of LHCb.

Referring to the third case shown in Figure 53, we have System D included in both System E and System B. We translate this information using the product of the two subsystemIDs. So when decomposing 715 (systemID of System D) in primes, we obtain 5, 11 and 13. We know that System D is part of System E (because of 13) and System B (because of 5). 

However it is important to note that in the LHCb context, there is no such a case. In other words, a system has only one parent and consequently can be included at most in one subsystem. It is because the control system is hierarchical. 
In the CIC DB, there is a table which contains one hundred prime numbers with their position as shown in Table 10. It can be extended by adding more prime numbers if needed.

	Position
	Prime number

	1
	3

	2
	5

	3
	7

	4
	11


Table 10. Extract of the prime number table.
To make the association, subsystem and devices, the user must specify only the smallest subsystem name (which cannot be divided any more). For instance, if a device is part of MUON A and part of L0MUON, only MUON A and L0MUON must be mentioned by the user. The other SUBSYSTEM (MUON and L0 TRIGGER) are automatically retrieved as the prime number decomposition of a number is unique. 

The correspondence between subsystems and subsystem IDs can be predefined and stored in SUBSYSTEM table (see Table 11).

	Subsystem Name
	Subsystem ID
	Comments (in bold prime number which identifies a sub-sub-system)

	TFC 
	3
	Subsystem which cannot be included

	DAQ 
	5
	Subsystem which cannot be included

	VELO 
	7
	Subsystem which cannot be included

	VELO A 
	77
	7*11 (included in the VELO)

	VELO C
	91
	7*13 (included in VELO)

	RICH
	17
	Subsystem which cannot be included

	RICH 1
	323
	17*19 (included in RICH)

	RICH 2
	391
	17*23 (included in RICH)

	OT
	29
	Subsystem which cannot be included

	OT A
	899
	29*31 (included in OT)

	OT C
	1073
	29*37 (included in OT)

	ST 
	41
	Subsystem which cannot be included

	IT
	1763
	41*43 (included in ST)

	TT 
	1927
	41*47 (included in ST)

	ECAL 
	53
	Subsystem which cannot be included

	HCAL
	59
	Subsystem which cannot be included

	PRS
	61
	Subsystem which cannot be included

	MUON
	67
	Subsystem which cannot be included

	MUON A
	4757
	67*71 (included in MUON)

	MUON C
	4891
	67*73 (included in MUON)

	L0MUON
	6557
	79*83 (included in L0TRIGGER)

	L0CALO
	7031
	79*89 (included in L0TRIGGER)

	PUS
	7663
	79*97 (included in L0TRIGGER)

	L0TRIGGER
	79
	Subsystem which cannot be included

	L0DU
	7979
	79*101 (included in L0TRIGGER)


Table 11. The Subsystem table with its subsystemid.
Remark: 

L0MUON is not included in the MUON system as they have different TELL1 boards so L0MUON is not included in MUON. (Same remark for the L0CALO). 

Then using this systemID attribution, FUNCTIONAL DEVICE.sysID is filled by computing the product of the SUBSYSTEMs (which cannot be divided).

For instance, if the device is in both MUON A and L0MUON, the sysID is equal to 4757*6557=31191649.

In the other direction, getting all the devices which are part of a subsystem A associated to sysID_A is done by checking that mod (sysID, sysID_A) =0.

To update the sysID attribute, in the two cases (standard ERM model and primes model), the user needs to specify the new list of subsystems. 

For instance, if a user has attributed VELO_A to a device identified by deviceid XX and normally this device is part of VELO_C, the update will be as follows:

· For the first method : delete all the rows in FUNCTIONAL_DEVICE_ SUBSYSTEM which have deviceid=XX and insert (XX,VELO_C); (XX,VELO)

· For the second method, update FUNCTIONAL_DEVICE set sysID =systemID(VELO_C) where deviceid=XX;
5.6.4.3 Performance comparisons
The tests have been made on a central Oracle database 10g installed by CERN Central Database Services. The workstation which hosts the database, is a SUN 280 R. The operating system is SOLARIS/RARP. The database service is a public service, shared between users from many experiments, not only LHCb.

I have executed the following SQL queries from two Oracle SQL*plus (i.e. two sessions). Autotrace (an Oracle tool to analyze queries) was set to TRACEONLY mode. 

· Select t.devicename from FUNCTIONAL_DEVICES t, SUBSYSTEM l, FUNCTIONAL_DEVICE_SUBSYSTEM s where t.deviceid=s.deviceid and s.systemid=l.systemid and l.system_name=’XXX’ for the first method;

· Select t.devicename from FUNCTIONAL_DEVICES t, SUBSYSTEM l where 

mod (t.sysid,l.systemid)=0 and l.system_name=’XXX’ for the second method;

In both cases, ‘XXX’ corresponds to a subsystem name. 

I have progressively increased the total number of devices. The Table 12 presents the results of the tests.
	Number of devices

	System name
	Number of rows returned
	Execution time 

Method 1 (avg, sec) Standard ERM model
	Execution time 

Method 2 (avg, sec)
Primes model

	7790
	DAQ


	2962
	0.04
	0.02

	15578
	MUON_C

TFC
	14

6676
	0.09

0.06
	0.01

0.04

	124610
	OT

MUON
	2160

224
	1.09

0.08
	0.08

0.04

	249218
	VELO

DAQ
	2944

94784
	4.04

8.01
	2.09

7.02

	498434
	MUON

L0TRIGGER

L0TRIGGER

RICH

VELO

DAQ
	896

640

1536

5184

5888

189568
	8.01

10.07

10.00

4.08

7.00

24.04
	14.02

11.00

8.03

3.02

5.06

21.08

	996864
	DAQ

ST

VELO 
	379136
12288

11776
	40.01

18.56

22.06
	36.07

22.50

28.00


Table 12. Comparison between the two methods.
From the results, one notices that Method 2 is more efficient as long as the number of devices is not higher than 500,000. It is due to the fact that Oracle indexes cannot be used if a function is used on a column. So the second method always performs a full scan of the FUNCTIONAL_DEVICE table because of mod (…) unlike the first method.

In my case, this query will be performed against the destination table of the TFC which has less than 60,000 rows as it will be shown in the Chapter 8. And in that case, the method 2 is faster. 

5.6.4.4 Limitations of the prime number algorithm

The problem

One can notice that the systemID grows very quickly as it is a prime number. So if there are too many subsystems, the model cannot be used. The aim of this section is to determine an upper limit on the number of subsystems, above which the prime number algorithm breaks down.

The inclusion of subsystems is determined by the FSM hierarchy. In the FSM hierarchy, for instance, the VELO consists of two subsystems VELO_A and VELO_C. 

The number of the TFC output ports will fix the number of leaves of the tree (in other words the level of granularity). For instance, all the devices of VELO_A are driven by the output 1 of the TFC switch (see Table 9). If in the FSM hierarchy VELO_A is split into 3 parts for instance VELO_A_1, VELO_A_2 and VELO_A_3, these 3 subsystems are not needed. Indeed from a partition point of view, selecting VELO_A_1 or VELO_A is the same, the TFC switch will program in the same way. So the subsystems VELO_A_1, VELO_A_2 and VELO_A_3 will be not stored in the SUBSYSTEM table.

So the deeper the tree is (or levels of inclusion), the bigger the systemID will be. In this part, we try to find the boundaries of this model, in terms of the depth of the tree design and the number of output ports. So there are two essential variables, the number of outputs of the switch which determines the number of leaves and the depth of the tree.

The systemID is an Oracle number, whose precision is less than 1038[4].

Convention: Let us note P(n), the function which gives the nth prime number, where n is an integer>1. (so we have P(1)=2, P(2)=3, P(3)=5, etc.).

We present three scenarios:

1. In the first one, there is no inclusion. It is the best case scenario. None of the systems has a parent. So each system is identified by a prime number. This scenario shows the maximum values that one of the two entities can have, in the case the method with the prime numbers should replace a N:M relationship. In our case, it will also correspond to the maximum number of output ports of the TFC switch.

2. In the second one, there is one level of inclusion only. A parent has only two children. It is the current design in LHCb as an output port of the TFC switch serves a subsystem which is included at most in one subsystem. Then we evaluate the maximum number of output ports, which also corresponds to the maximum of child subsystems (with one parent) which can be defined.

3. In the third one, we simulate a worst case scenario, by maximizing the depth of the tree (i.e. the levels of inclusion). At each level of the tree, a subsystem is included. The advantage of this tree is a relation can be derived between the number of leaves and the depth of a tree. We assess the maximum number of subsystems which can be handled. 
First scenario the FSM subsystem tree corresponds to the TFC partitions
In that case, there is no subsystem inclusion. The subsystems displayed to the user correspond exactly to the TFC partitions. In this case, the maximum number of subsystems corresponds to the number of prime numbers less than 1038, roughly 2.30*1034 prime numbers, which is the upper limit on the number of subsystems [5].
However there is a limit fixed by the number of output ports of the TFC switch. Nowadays, on the market the biggest switch has 1200 ports. It is the Force Ten switch used in the DAQ system. So if there is no subsystem inclusion, the model works fine with the biggest switch as 2.30*1034 >1200. It also implies that this model can be used to replace a N:M relationship model if one of the two entities has less than 2.30*1034 values.
Second scenario each subsystem is grouped by two
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Figure 54. Example of  4 subsystems grouped by two.
Let us assume that the TFC switch has N outputs and subsystems are grouped per two (Figure 54). 

If N is odd, then there is one inclusion of 3 subsystems. There is only one level of inclusion as it is the case in the current implementation. Let us found the maximal value of N. 

There are N children and E[N/2] parents. The biggest systemID will be P(E[N/2]*P(N+E[N/2]). If N is even, N can be written as N=2k and the previous formula is P(k)*P(3k). If N is odd, N can be written as N=2k+1 and the previous formula is the same as for even numbers, i.e . , P(k)*P(3k). P(k) is equivalent to klog(k) and P(3k) to 3kln(3k), so P(k)*P(3k) is equivalent to k²ln(k)*ln(3k) [4].

And k²ln(k)*ln(3k) must be have at most 39 digits . If we note f(p)= p²ln(p)*ln(3p), f is an increasing function as product of increasing functions. 

We have f(1017)=1034*39.14*40.24=1.575093*1037 , f(5.1017)=4.26*1038.(39digits), f(8.1017)=1.11*1039 (40 digits). So k=8*1017 is a good approximation. And N=16.1017.

There are some years to go by before getting a switch with 16.1017output ports!

Third scenario Example of a tree where one leaf is added at each level

The maximum depth of this tree design as shown in Figure 55 can be computed given the number of leaves which is equal to the number of output ports. 
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Figure 55. Example of a representation of a tree of depth equal to 5 and with 15 leaves.

The total number of nodes in this type of tree design is equal to 2N-1 where N corresponds to the number of leaves (N≥2) and the depth is equal to N.

Proof of the formula by induction on N

N=2 

Figure 56 shows how the tree looks like. There is in total 3 nodes (2 leaves + one parent node). And 2N-1=2*2-1=3. The depth is 1 (2-1). So the formula is true for N=2
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Figure 56. A tree of depth 1 with 2 leaves.
Let us assume that it is true for N, let us show it for N+1.

N->N+1
Figure 57 shows how to build a tree of N+1 leaves from a tree of N leaves. Two nodes have been added (represented in green). SN+1 represented the (N+1) th leaf of the tree. Then, this node is joined to the tree of N leaves by adding the node SP+1. This node has two children, SN+1 and SP, the top node of the tree with N leaves. 

By assumption, the tree with N leaves has 2N-1 nodes. To build the tree with N+1 leaves, we have added two nodes (SN+1, SP+1). So the tree with N+1 leaves has (2N-1) + 2 = 2N+1 = 2(N+1)-1. So the formula is true for N+1. 

The depth of the tree with N leaves is N-1. The tree with N+1 leaves has an extra level with the SP+1 node. So the depth of the tree with N+1 leaves is (N-1) +1=N. So the formula is true for N+1.

Thus it is true for any N (q.e.d).
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Figure 57. Building a tree of N+1 leaves from a tree with N leaves.
The next step is to quantify the subsystemID number limit according to N.

Case where N=16 (the number of TFC output switch)
The sysID is an Oracle number, which cannot be greater than 1038.  

Let us assume that the TFC switch has 16 output ports, so N=16. There are 2*16-1=31 systemIDs and the depth is equal to (16-1) =15 levels.

The root of the tree will get the smallest ID, which is the smallest prime number. It is then equal to 2.

The two children of the root will get 2*3=P (1)*P (2) and 2*5=P(1)*P(3) as systemIDs. At the second level of inclusion, P(1)*P(3)*P(4) and P(1)*P(3)*P(5) will be used. At each level, two new prime numbers are needed. 
So at the last level, (level=N-1) of the tree the two subsystem IDs will be P(k)∏P(2n+1) where n is an integer between 0 and 14 (15-1), as there are 15 levels and k is either 30 or 31 as there are two subsystems which are included iteratively in 15 subsystems. In other words it is the product of over P(n) where n is an odd number between 1 and 31.

So the biggest systemID will be P(31)*∏P(2n+1) where n varies from 0 to 14. We have P(31)=127, P(29)=109,…, P(1)=2. So the biggest systemID is 4255492212390218658617935, which can be stored in the CIC DB as it has 25 digits.

Computing the maximal value of N with this type of tree

Let us assume that the TFC switch has N outputs. The biggest systemID will be equal to P(2N-1)* ∏P(2n+1) where n is an integer between 0 and (N-1)-1=N-2.

After computations using the list of the 1000 first primes [5], I found that the maximum value of N is equal to 21. For N=22, P(2N-1)*∏P(2n+1) = 1,55736049*1038, and P(2N-1)=P(43)=191. This number has 39 digits.

To conclude, to go for this representation, it is preferable that the number of level of inclusions is not too high, strictly less than 22. 
5.6.4.5 Link type representation

The LINK TYPE (UC 8) has been modeled with a similar concept. A simple link type such as the TFC signal will be associated with a prime number (link_nbr attribute). A composite link type (TFC signal and data signal), which is a set of simple link types, will be associated with the product of the prime numbers (link_nbr) of the links in the set. There is at most one level of inclusion. So it allows having 16.1017 different types of links referring to the second scenario in the previous section. Here again, the number of link types is rather low, less than 20 in total. It is also a static number over the years. So the method with the prime numbers can be applied.

5.6.4.6 Function representation

The FUNCTIONAL_DEVICES.functionID has been modeled using prime numbers. There is a table FUNCTION (see Figure 50) which contains the possible functions. There are a limited numbers (less than 20) and mainly used for the DAQ (DNS, NFS, TFTP, DHCP have currently defined). Each function is attributed a prime number as an ID. If there is no function the attributeID is 0. The FUNCTIONAL_DEVICES.functionID corresponds to the product of the functioned, it fulfills. For instance, if a controls PC hosts both a DHCP server and a DNS server and the functionID of the DNS is 2 and the functionID of the DHCP is 3, then 2*3=6 corresponds to the functionID of this controls PC.

Here there is no level of inclusion, so it corresponds to the first scenario described in 5.6.4.4.  It means that 2.30*1034 different functions can be stored, which is by far more than the possible functions we had (less 20 for the moment).
5.6.5 Entity & relationship

· A LINK (UC 8) is a connection between two ports of two functional devices. To program the routing tables and the TFC switch and also to get paths between 2 devices, the port should be specified. A link carries data, a tfc signal, a data signal, a high voltage signal, or it can be a mixture of tfc_signal and data signal (UC 8).
Three entities have been modelled, a port, a link type and a link.

A port is a generic concept which covers connectors and network interfaces. A port is where you can plug a cable to it. It has attributes bound to the hardware device and others to the functional device. 

· A HARDWARE PORT (see Figure 58) belongs to a HARDWARE DEVICE (UC 12). There is a many-to-one relationship from HARDWARE PORT to HARDWARE DEVICE. It is also uniquely identified by a port number (UC 8), a type (UC 12) and a dataflow way (input or output) (UC 8) and a serial code which corresponds to the HARDWARE DEVICE it belongs to. In the case of an Ethernet port (so there is no concept of input or output), the dataflow way is defined according to the data coming from the detector. It can have a burnt internal address (corresponds to the real MAC address) (UC 12) and a MAC address (UC 12), such as the port of a DAQ switch. These attributes depend on the hardware device. 
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Figure 58. HARDWARE PORT model.
· A FUNCTIONAL PORT (see Figure 59) (UC 8) belongs to a FUNCTIONAL DEVICE. There is a many-to-one relationship model from FUNCTIONAL PORT to FUNCTIONAL DEVICE. It is also uniquely identified by a number (UC 8), a type (UC 12) and a dataflow way (same concept as in hardware) (UC 8) and a deviceID.  It has an administrative status (UC 12). It can be up or down. Some attributes are specific to the DAQ system such an IP address (UC 12), a phy (type of cable which can be plugged) (UC 8) and a speed (UC 8). In some cases, a port can be viewed as two logical interfaces. One interface is used for data acquisition and another one for the control. A pxi booting (PCI EXtensions for Instrumentation) (UC 11) flag specifies which logical interface will be used for booting. All these parameters will not change after a replacement of hardware.
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Figure 59. FUNCTIONAL PORT model.
· An IP INFO (UC 12) as shown in Figure 59 can be considered as an entity too. It is part of a subnet so it has a subnet mask (UC 9). Also an IP INFO is associated with a name (UC 9). There is a one-to-one relationship between IP INFO and name. The same IP address can be attributed to several functional ports.

· An IPALIAS (UC 14) as shown Figure 59  is an entity. An IPALIAS is assigned to an IP address. One IP address can have several IP aliases (UC 9).

· A LINK TYPE (see Figure 60) (UC 8) has a name. It can be a simple link type, i.e. a TFC signal or it can be a composite link type, i.e. TFC signal and data signal. The composition of a link is associated with link_nbr (see section 5.4.4.5 for explanations).
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Figure 60. LINK TYPE model.
The CONNECTIVITY (UC 7) entity (see Figure 61) is between two FUNCTIONAL PORTS. A link can be uni- or bi-directional (UC 8). A link can be enabled or disabled (UC 13) (by performing some masking operations in electronics registers). The CONNECTIVITY entity has a LINK TYPE (UC 8). There is a many-to-one relationship from CONNECTIVITY to LINK TYPE.

[image: image28.jpg]FUNCTIONAL DEVICE

+ devicelD (pk)

+ devicename

+ devicetypelD

+ promiscuous mode
+ nodeused

+ location

+ serial code

+ sysID

+ functionID

FUNCTIONAL PORT

+ portID (pk)
+ port nb

+ port type

+ port way

+ devicelD

+ pxi-booting

+ IP address

+phy

+ speed IPALIAS

Assigned to \\4

+ IP alias (pk

+ linktypelD (pk) Composed of + |P address

+ link name

+ link_nbr CONNECTIVITY

i + LinkI D (pk)

) + portiD from
N + portiD to

+ link used
+ bidirectional link

-
N

Set to

IP INFO

+|P address (pk)
+ 1P name has
+ subnet mask

Assipned to

+ linktypelD
+ sysID




Figure 61. LINK model.

5.6.6 Board components
In some cases, the connectivity of a board must be stored (UC 28). It is the microscopic level. It has been modeled in a similar way as the connectivity between functional devices but it is less complicated. Indeed for board components, the port entity has been removed as there are no details required about the “port” of a chip. It is just necessary to know which port(s) of a functional device, the chip is connected to. The different link types of a microscopic link are the same as the ones defined for macroscopic links (otherwise tracking paths is not possible). The concept of subsystem is removed. 

5.6.7 Table schema

Figure 62 shows the table schema of the connectivity part.
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Figure 62. Connectivity table schema.
The SYSTEM_NAME_LIST table contains the list of the subsystems.

The DEVICETYPE_BOOTING table (resp.  DEVICE_BOOTING) contains boot image information for a certain device type (resp. device). The devicetypeid (resp.deviceid) is a foreign key to FUNCTIONAL_DEVICE_TYPES.devicetypeid (resp. FUNCTIONAL_DEVICES.deviceid)

The portid column (sequence of number) is the primary key of the FUNCTIONAL_PORT_PROPERTIES table. It is to avoid having a complex primary key composed of (deviceid, port_nbr, port_type and port_way). The deviceid column is a foreign key on FUNCTIONAL_DEVICES.deviceid so that we know to which functional device this port belongs. 

The ip_address column is a foreign key to IPINFO.ip_address. 

Apart from the ip_address, the same remarks can be made for the HARDWARE_PORT_PROPERTIES table.

The linktypeid, a sequence of numbers is the primary key of the LINK_TYPES table to allow an easy update of the link type. If we need to remove a simple link from a composite link, we just update the LINK_TYPE.link_nbr column table. It does not affect the connectivity table.

The CONNECTIVITY table contains all the links between device ports. PortIDFrom (resp. PortIDTO) column specifies the start point (resp. end point) of the link. Both of them are foreign keys to FUNCTIONAL_PORT_PROPERTIES.portID.

The bidirectional_link column is a flag, 0 if the link is unidirectional. The lkused column is also a flag, 1 if it is used. The linktypeID indicates the type of the link. It is a foreign key to LINK_TYPE.linktypeID. The link_weight column is explained in the chapter. It is used to get the paths too.  

The sysID column specifies to which subsystem(s) this link belongs.  Normally, one can guess to which subsystem(s) a link belongs. Indeed assume that there is a link is between device A, port 1 and device B, port 2. Device A is part of {subsystem_1, subsystem_2, subsystem_3} and device B is part of {subsystem_1, subsystem_2}. So the link is part of the intersection of the two ensembles, i.e. {subsystem_1, subsystem_2}. For performance reasons, the sysID has been added to the connectivity table. It avoids doing this computation as it is often queried. However it is important to note that to avoid any inconsistency, this column is accessed only in read-only mode, i.e. the user or the application program cannot write into this column. 

Figure 63 presents the table schema for the board connectivity.

[image: image30.jpg]MICROSCOPIC_CONNECTMTY

PK linkid

FIKILUTIT | cpntidfrom

ut port_nbfrom

FI2 U212 | epnicto

u2 port_nbto
Tink_weight
bidirectional_link_used
linkused

FIGB | linktypelD

HARDWARE_DEVICES
FUNCTIONAL_DEVICE_TYPES FUNCTIONAL DEVICES PK [serial code DIRVEE I GHRR
PK [ devicetypelD PK | devicel status £ orydord
responsible
Nbofinput node hwname s
Nbofoutput promiscuous_mode Iocation location
description —| nodeused hwiype FI2I1 | deviceid
RGBcolor last_update FK112 | serial_code
system_name user_update < - -
last_update created
created author
user_update terminal_name
author FKI1 1 | devicetypelD
terminal_name FK212 | serial_code
location
system_name
FUNCTIONAL_COMPONENTS HARDWARE_COMPONENTS
PK |cpntid PK |snbid
LINK_TYPE
cpnt_name —®i1 [seriaib
PK linktypelD FK2J1 [snbid status
bt e FKT12 | motherboardid responsible
ink_name cpnt_type replacable
U2 |{linknbr comments
user_update hwname
last_update htype
created le— 12 |location
author
terminal_name





Figure 63. Board connectivity table schema.

5.6.8 A more complex table schema

LHCb is a complex environment. The table schema produced looks simple. But to reach this level of simplicity was not obvious. Also one could have created a FUNCTIONAL_DEVICE_TYPE table for each device type table so that it is possible to define a precise structure of device types. But the main inconvenience of this schema is whenever there is a new device type; one has to define another table. So the number of tables can grow quite quickly. 

Another alternative for the DEVICE_HISTORY table would have been to design a HARDWARE HISTORY entity and a FUNCTIONAL HISTORY entity.  But it would have been a problem when a hardware device is IN_USE.

If there is one history table, the content would have been like as shown in Table 13. 12456 is the deviceid of MUON_TELL1_12.

	deviceID
	Serial code
	Status
	Date of change
	location

	12456
	XDG6FDG77
	IN_USE
	2006/07/21
	DU78RC89SL9

	NULL
	GHOFD89878
	SPARE
	2006/05/18
	Build2/Room5

	12456
	NULL
	NONE
	2008/10/23
	DU78RC89SL9

	NULL
	XDG6FDG77
	IN_REPAIR
	2008/10/23
	Frascati

	12456
	GHOFD89878
	IN_USE
	2008/10/24
	DU78RC89SL9


Table 13. Content of the history table.

If there are two history tables, the content would have be as presented in Table 14.

	Serial code
	status
	Date of change
	location

	XDG6FDG77
	IN_USE
	2006/07/21
	DU78RC89SL9

	GHOFD89878
	SPARE
	2006/05/18
	Build2/Room5

	XDG6FDG77
	IN_REPAIR
	2008/10/23
	Frascati

	GHOFD89878
	IN_USE
	2008/10/24
	DU78RC89SL9


	Deviceid
	status
	Date of change
	location

	12456
	IN_USE
	2006/07/21
	DU78RC89SL9

	12456
	NONE
	2008/10/23
	DU78RC89SL9

	12456
	IN_USE
	2008/10/24
	DU78RC89SL9


Table 14. Content of the two history tables: on the top the HARDWARE HISTORY table and on the bottom, the FUNCTIONAL HISTORY table.
So the main disadvantages of the having HARDWARE HISTORY and FUNCTIONAL HISTORY are:

· There are more rows created. Whenever a hardware device is IN_USE, there is one row inserted in the HARDWARE HISTORY table and another one in FUNCTIONAL HISTORY table.

· There is a need of a reference between the two tables as we do not know which functional device is occupied by which hardware device, especially when two functional devices got down the same day. The location can be the same for two functional devices. So if the reference is added, it turns out to be model 1.

· The queries to get the history of a functional device or of a hardware device are more complex than in the first model. 

First model: select * from DEVICE_HISTORY where deviceid=:devid (or serialcode=:hwcode)

Second model: select * from HW_HISTORY t, FCTAL_HISTORY e, where e.deviceid=:devid and e.date of change=t.date of change and e.location=t.location

(However this is not sufficient!)

Another temptation was to let the users or applications programs store paths. But it would have been too rigid and difficult to maintain. Moreover there would be too many paths. It is more elegant to generate paths dynamically from the CONNECTIVITY table. In that sense, it follows the autonomics principles.
5.7 Verification of the completeness of the table schema

Let us take all the use cases defined in Chapter 4. Table 15 shows which tables and columns are used to get the information to fulfill the use cases. When no column is specified, it means that all the columns are needed. All the tables shown in the different table schemas are used and all the use cases have been satisfied at the level of the database schema. In some cases, use cases needs extra tables which are internal and dynamically filled. They are hidden to the users. These tables are used to get paths between devices and will be explained in detail in the next chapter.

	Information type
	Use case number
	Answer in Tables {columns}

	RECIPE
	UC 1
	RECIPES

RECIPE_TAGS

ITEM

RECIPE_DATA

HIERARCHY

REFERENCES

	
	UC 2
	RECIPES

RECIPE_TAGS

ITEM

RECIPE_DATA

HIERARCHY

REFERENCES

	
	UC 3
	RECIPES

RECIPE_TAGS

ITEM

RECIPE_DATA

HIERARCHY

REFERENCES

	
	UC 4
	RECIPES

RECIPE_TAGS

ITEM

RECIPE_DATA

HIERARCHY

	
	UC 5
	RECIPES

RECIPE_TAGS

	
	UC 6
	FUNCTIONAL_DEVICES

FUNCTIONAL_PORT_PROPERTIES 

CONNECTIVITY

	
	UC 7
	CONNECTIVITY (lkinfo)

	NETWORKING
	UC 8
	Other internal tables (see next chapter)

FUNCTIONAL_PORT_PROPERTIES 

IPINFO 

HARDWARE_PORT_PROPERTIES

FUNCTIONAL_DEVICES

	
	UC 9
	FUNCTIONAL_DEVICES

FUNCTIONAL_PORT_PROPERTIES 

IPINFO 

HARDWARE_PORT_PROPERTIES 

IPALIAS

DEVICETYPE_BOOTING

Other internal tables (see next chapter)

	
	UC 10
	FUNCTIONAL_DEVICES

DEVICE_HISTORY

CONNECTIVITY

Other internal tables (see next chapter) 

	
	UC 11
	FUNCTIONAL_DEVICES

HARDWARE_DEVICES

FUNCTIONAL_PORT_PROPERTIES 

IPINFO 

HARDWARE_PORT_PROPERTIES 

DEVICE_HISTORY

CONNECTIVITY

Other internal tables (see next chapter)

	
	UC 12
	FUNCTIONAL_DEVICES(devicename)

FUNCTIONAL_PORT_PROPERTIES (deviceid, ip address)

IPINFO (ipname, subnetMask)

HARDWARE_PORT_PROPERTIES (mac address)

	
	UC 13
	FUNCTIONAL_DEVICES(devicename, function)

FUNCTION

	
	UC 14
	FUNCTIONAL_DEVICES(devicename)

FUNCTIONAL_PORT_PROPERTIES (deviceid, ip address)

IPINFO

IPALIAS

	
	UC 15
	CONNECTIVITY (lkinfo)

	
	UC 16
	FUNCTIONAL_DEVICES(devicename)

FUNCTIONAL_PORT_PROPERTIES (deviceid)

CONNECTIVTY

	PARTITIONING
	UC 17
	FUNCTIONAL_DEVICES(devicename,system_name)

FUNCTIONAL_PORT_PROPERTIES (deviceid)

SUBSYSTEM

CONNECTIVITY

	
	UC 18
	FUNCTIONAL_DEVICES(devicename,system_name)

FUNCTIONAL_PORT_PROPERTIES (deviceid)

CONNECTIVITY

	
	UC 19
	FUNCTIONAL_DEVICES(devicename,system_name)

FUNCTIONAL_PORT_PROPERTIES (deviceid)

CONNECTIVITY

	EQUIPMENT

MANAGEMENT
	UC 20
	HARDWARE_DEVICES (serialnb, status, location)

	
	UC 21
	HARDWARE_DEVICES (serialnb, status, location)

	
	UC 22
	FUNCTIONAL_DEVICES(devicename)

DEVICE_HISTORY

	
	UC 23
	FUNCTIONAL_DEVICES(devicename)

HARDWARE_DEVICES (serialnb, status, location)

DEVICE_HISTORY

	
	UC 24
	FUNCTIONAL_DEVICES(devicename)

HARDWARE_DEVICES (serialnb, status, location)

DEVICE_HISTORY

	
	UC 25
	FUNCTIONAL_DEVICES(devicename)

HARDWARE_DEVICES (serialnb, status, location)

DEVICE_HISTORY

	
	UC 26
	FUNCTIONAL_DEVICES(devicename)

HARDWARE_DEVICES (serialnb, status, location)

DEVICE_HISTORY

	
	UC 27
	FUNCTIONAL_DEVICES(devicename, location)



	
	UC 28
	FUNCTIONAL_COMPONENTS (cpnt_name,snbid)

HARDWARE_COMPONENTS (serialnb, status, location,hwtype)

COMPONENT_HISTORY

	
	UC 29
	FUNCTIONAL_COMPONENTS (cpnt_name,snbid)

HARDWARE_COMPONENTS (serialnb, status, location)

COMPONENT_HISTORY

FUNCTIONAL_DEVICES(devicename)

HARDWARE_DEVICES (serialnb, status, location)

DEVICE_HISTORY

	
	UC 30
	COMPONENT_HISTORY

	FAULT DETECTION
	UC 31
	FUNCTIONAL_DEVICES (devicename, serialnb, location)

FUNCTIONAL_PORTS (deviceid, portid)

CONNECTIVITY

	
	UC 32
	FUNCTIONAL_DEVICES (devicename, serialnb, location)

FUNCTIONAL_COMPONENTS

HARDWARE_COMPONENTS

FUNCTIONAL_PORTS (deviceid, portid)

MICROSCOPIC_CONNECTIVITY

CONNECTIVITY

	
	UC 33
	FUNCTIONAL_DEVICES (devicename, serialnb, location)

DEVICE_HISTORY 

	
	UC 34
	FUNCTIONAL_DEVICES(devicename, serialnb)

HARDWARE_DEVICES (serialnb, status, hwtype)

DEVICE_HISTORY 


Table 15. Verification of the completeness of the schema.
5.8 Conclusion

In this chapter, we have described the CIC DB schema which represents the information about configuration, connectivity and inventory. It has been obtained using the ERM and the use cases defined in Chapter 4. It is the first part of the database layer.

The efficiency of the database schema is essential to implement adaptive tools. A priori, there are some attributes such CONNECTIVITY.lkweight or FUNCTIONAL_DEVICES.node which can appear unclear in this chapter. In the next chapter, we will present how to automatically generate and update the routing and destination tables and how dynamically get all the paths between two modules. Then the use of these parameters will become more precise. It is the second part of the database layer with its set of PL/SQL routines.
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� Number and varchar2 are types used in Oracle databases. They denote integer values and character strings respectively


� Check or declarative constraint is specified when creating a table. For instance, check that the value of the column is always greater than 0 can be implemented using a check constraint.


� If tables are truncated, the application software will not be affected. It is like empty tables.


� The SUBSYSTEM table will contain all the possible subsystems according to the ones defined in ECS. It prevents from attributing mistyped or unknown subsystems to devices. It is a security feature.


� The fact that the figures are precise has no particular meaning.





