Chapter 6 Automated creation of routing and destination tables using PL/SQL

Chapter 6 Automated creation of routing and destination tables using PL/SQL
This chapter explains the second part of the database layer which consists of the PL/SQL codes. Firstly, it describes how routing tables, dhcp config file and paths between devices can be generated and updating automatically using the CONNECTIVITY table in the CIC DB. It is one of the key elements of the set of autonomic tools.

Secondly, it presents the other PL/SQL codes which have been implemented
6.1 Introduction

6.1.1 Problem
A routing table (for the DAQ switches) or a destination table (for the TFC switch or for the DHCP servers) provides information on how to reach the possible destinations. To allow the creation of automatic routing or destination tables, we need to know if a device can be a destination, i.e. if it can receive packets. Typically a PC in the trigger farm will be a possible destination whereas a switch not.

The query “Give all the paths (in a subsystem) which goes through a given device” is a problem too. As finding the longest path in a graph is a NP complete problem [1], finding all the paths is also a NP complete problem. So there is no algorithm which can solve this problem in a polynomial time, i.e. rapidly. Usually heuristic algorithms are used (tabu search [2] or genetic [3] algorithms for example). In our context, these types of algorithms could not be used as the output of the algorithm must be deterministic, i.e. same output at each execution of the algorithm.

To reduce the complexity of the problem, we introduce a parameter M, the maximum path length, i.e. the maximum number of hops. So the problem can be reformulated as finding all the paths whose length is less than M. M is set by the user or the application program.

The execution time depends on the topology of the graph, i.e. the number of vertices and the maximum path length found (the worst case is when it is a fully-connected graph because there are more paths).

The algorithm below has been described in [4].

6.1.2 Intermediate and host nodes and paths

A device can be either an intermediate or a host node. An intermediate node (switches, splitters, and L0 electronics) transfers the data without processing and manipulating it. A host node processes and modifies the data such as TELL1 boards and PCs. A host node has a more complex structure than an intermediate node. For example, the input data of a TELL1 board is generally a digital signal. The output data of a TELL1 board is zero-suppressed and formatted according to the MEP protocol. Figure 52 shows a slice of the DAQ connectivity. Orange boxes are host nodes (VELO_L1_21 and Farm node 01 for instance are host nodes) and non-filled boxes are intermediate nodes such Force 10.

The FUNCTIONAL_DEVICES.node column, which is a flag, contains this information. The user must specify if the functional device is a host node (node=1) or an intermediate node (node=0). A host node is also the last device in the subsystem flow. So referring to Figure 52, VELO_L1_21 will have node set to 1 whereas Force 10 will have node set to 0.

[image: image1.jpg]g

DS_CTRLS_01

DS_SWITCH_01

. Host node FN : farm Node

—— Datalink)
) D Intermediate node
—— Control link

Figure 1. Concept of host and intermediate nodes.
The concept of host and intermediate nodes is very useful to determine whether a device can be a destination. Only a host node can be a destination in a routing and a destination table.

A path can be defined as a sequence of nodes in which the pattern intermediate node - host node - intermediate node is not allowed. Referring to Figure 52, [DS_SWITCH_01, FN_01, DS_CTRLS_01] is not allowed as there is a host node between two intermediate nodes. A path can contain at most 2 host nodes. The position of a host node in a path is either the starting or terminal node.

The maximum number of hops (M) corresponds to the maximum number of nodes in a path. This parameter is a characteristic of the network.

A routing path is a special path which starts from an intermediate node (switch) and ends at a host node (PC for instance).

6.1.3 Link and path weights

The CONNECTIVITY.link_weight column represents the weight of a link noted W(L) and automatically set to (see Figure 53):

· 0 if the link is between 2 intermediate nodes

· 1 if the directed link is between a host node and an intermediate node

· 2 if the directed link is between an intermediate node and a host node.

· 3 if the link is between two host nodes (although not used here)

The path weight W(P) is defined as the sum of the link weights along the path. By using the definition of the routing path, we can derive the following theorem which will be used to find the subset of routing paths from paths.

A path P of length J is a routing path of length J
[image: image2.jpg]

where W(L)i corresponds to the weight of the i-th link in the path P. So a path of length J is a routing path of length J is the first host node corresponds to the last node of the path. The proof is given in the Appendix A. Figure 54 shows an example of a routing path.
[image: image3.jpg]w(L)=0
Switch Switch

. WiL)=1 ——
m Switch

Host

Switch ﬂ

Host

YO [uiten | 1E72 ‘D = “L i m

Host Host Host Host

Figure 2. Link weight concept.

[image: image4.jpg]Switch

w(L)=0

Switch

w(L)=0

Switch

WL)=2
]Q W(P)=0+0+2=2

Figure 3. Example of a routing path.

6.2 Algorithm to generate routing tables

Tables which are suffixed by “_TEMP” are temporary tables. For instance, there is PATH_LINES which is a real table and PATH_LINES_TEMP which is a temporary table with the same structure as PATH_LINES. These tables are not represented in Figure 55 for clarity purposes. An exception has been made for LINK_PAIRS and AGGREGATED_LINKS which are temporary tables, because we estimated that they are important tables. There are no constraints as we do not define constraints for temporary tables. Intermediate results are stored in temporary tables.
6.2.1 Routing tables (reminder)

A routing table consists of providing the following information:

· IP address of the destination;

· Port number to which the IP packet should forwarded;

· IP address of the interface of the next hop;

· Subnet mask of the next hop.

The concept of routing tables has been explained in detail, in Chapter 3, section 4.
6.2.2 Initialization
The input parameters of the routing algorithm are the name of the switch (the one we want to generate the routing table) and M.

[image: image5.jpg]fouting_table
path_lines PIERY functional_devices hardware_devices
PKFK1 [nodet PKFK1 PK_ | devicelD PK [serial_code
PK path PK piromid0
< deviceName status
node2 ptoidd active — responsible
node3 ptoid] node comment
noded nodeidend1 promiscuous_mode hwharme
node5 syster_name nodeused location
nodef pathtype last_update hwtype
node? pathused user_update
noded pathlength created
nodeg routingpathused author
node10 terminal_name
node 1 Ll system_name
pathtype FK2 | serial_code hardware_por_praperties
pathweight o aggregated_links location
pathused fink_pairs devicetypelD PK | portid
pathnecessary .
last_update link_weight zmﬂype
nodet nfrom EorEway
node2 nto bia ~
nods3 linktype mac_address
link_weight linkused created
link_type system_name author
linkused last_update
Sysiem._naf connectivity functional_port_properties user_update
— FKI1 |serial_code
T PK_| linkid PK_|portiD terminal_name
» FK4 | portiDFrom FK2 | devicelD
ikl FKS | portiDTO port_nbr
ikename bidirectional used [Adrinistrative_Status
Fit |k nbr link_weight port_way
user_update [—— used Speed
last_update user_update port_type
oy last_update | — Phy
author pi_booting e
. . created FKI [ip_address —» Il
Sibeystan name terminal_name PK [ip_address
= system_name T
¢ FK3 | linktypelD system_name List ipname
subnethMask
prime_number PK |systemiD m‘s‘ed
author
PK [link_nbr Systemnde terminal_name

primeNb_postion

Figure 4. Path modeling.
The algorithm to generate the routing table is based on the following steps:

· Create the AGGREGATED_LINKS table (a temporary table)
 which contains all the links between devices. If a link is bidirectional, we store the reverted link. The principles of this creation are shown in Figure 56. The port number concept is not considered. For instance if the Force 10 router is connected via 10 links to a distribution switch. In the AGGREGATED_LINKS table, one link is considered between the Force 10 and a distribution switch. It is derived from the connectivity table (cf Figure 55). This step permits to reduce the number of links to be handled.

[image: image6.jpg]CONNECTIVITY Table AGGREGATED_LINKS Table

Switch «—| Switch Switch ; Switch

Switch Switch Switch —_— Switch

I

Switch

I

Switch Switch Switch
—

Switch

I

Link type A — Linktype B

Figure 5. Generating the AGGREGATED_LINKS table using the CONNECTIVITY table.
· Create the LINK_PAIRS table (temporary table) which contains all valid pairs of successive links (one node in common). For instance, the link between Force ten-distribution switch 1 and the link between distribution switch 1-Farm node 1.
To create the LINK_PAIRS table, we perform a self-join of the AGGREGATED_LINKS table with the following constraints:

· Link1 is defined by (Node_1, Node_2) and Link2 is defined by (Node_2, Node_3) (referring to Figure 55) where Node_2 corresponds both to Node_to of link1 and to Node_from of link2.

· The link_weight of link1 must be equal to 0 because we want to find routing paths (i.e. it starts and ends from/at a switch and, as we are looking for pairs of links, we exclude the switch-host links).

· PATH_LINES_TEMP table is initialized with the elements from the AGGREGATED_LINKS (to find path length equal to 1) and LINK_PAIRS table which have the switch given as input parameter as a starting node (Node_1 column).

We then have found paths which have a length equal to 1 or 2. These paths are inserted in the PATH_LINES_TEMP table. If the path length is equal to 1, then the path is inserted as a row into the PATH_LINES_TEMP table using the columns Node_1, Node_2. If the pathlength is equal to 2, then the path is inserted as a row into the PATH_LINES_TEMP table using the columns Node_1, Node_2, Node_3.

6.2.3 Body
This subsection explains how we find the routing paths.

We iterate over i which represents the path length.

At each iteration i, a join between the LINK_PAIRS and the PATH_LINES_TEMP tables is executed. It means that a path P, with W(P)=0 (i.e. having not reached a host) is completed with an element from LINK_PAIRS whose first link is equal to the last link of P.

If no such pair exists, the path P is removed. There may be more than one pair which verifies the conditions. Thus if there are N possible pairs, these N possible pairs will be appended to P and there will be N new paths (i.e. N new rows in the PATH_LINES_TEMP).

At the end of iteration i, we have found all the paths of length i and inserted them in the PATH_LINES_TEMP table and we have filled the i +1 Node columns of PATH_LINES_TEMP table.

For each iteration i, the detailed description of the steps is as follows:

1. In the PATH_LINES_TEMP table, select the paths P where W(P)=0. (The last column filled is Node_i).

2. Find all the possible pairs of links where (Node_i-1, Node_i) is equal to (Node_1, Node_2) of LINK_PAIRS table and check that there is no cycle (i.e. a node appearing twice in the path).
3. Insert these new valid paths in the PATH_LINES_TEMP table. So the Node_1 to Node_i+1 columns are filled in.
4. Delete the old paths where W (P)=0 and Node_i+1=0.

5. Increment i by 1.
6. Stop the loop if i is greater than M or if all the paths are routing paths, i.e. all paths verify W (P)>0.

7. Go back to the port level for the first and last links and insert the portids of the network interface starting the path, ending the first link and ending the path into ROUTING_TABLE_TEMP. Finally, we resolve multiple paths to a given (destination, network interface) by setting routingpathused column to 1 for the shortest routing path (required by the DAQ team).

8. Insert the valid routing paths found in PATH_LINES_TEMP into PATH_LINES, in ROUTING_TABLE_TEMP into ROUTING_TABLE.

Commit to delete the content of the temporary tables, except the content of AGGREGATED_LINKS and LINK_PAIRS. They are kept as they can be reused for another switch if it is part of the same subsystem.
This algorithm has been tested against several network architectures including full mesh layouts (see next Chapter).

Remark on step 6:

If the loop is stopped because of M, paths whose length is greater than M are not found. We trust the user or the application in setting a correct value of M.

6.2.4 Routing table

The PATH_LINES table contains all the routing paths of a switch in detail with the different hops. The pfromid0, ptoid0 and ptoid1 columns of ROUTING_TABLE respectively represent the portid of the network interface of the nodeid_start0, the portid of the network interface of the next hop and the portid of the destination network interface.

The port number to which the packet should be sent is retrieved using pfromid0. The IP and MAC addresses of the next hop are found using ptoid0 and the IP address of the destination is known using ptoid1.

The routing paths used to program the switch are stored in the ROUTING_TABLE table with routingpathused set to 1. It allows a better update and management of paths in case of a problem with a port or a device.
A join between the ROUTING_TABLE table, the FUNCTIONAL_PORT_PROPERTIES and IPINFO tables permits to get the IP address and the subnet mask. We do a join between the ROUTING_TABLE table and the FUNCTIONAL_PORT_PROPERTIES and HARDWARE_PORT_PROPERTIES tables to get the mac_address. To avoid many updates in case of a MAC address or an IP address changes, the two joins are performed on the fly, i.e. when the user asks for loading the routing tables.

All the routing tables, i.e. all the routing tables of the DAQ switches, are stored in ROUTING_TABLE (one table only).
6.2.5 PL/SQL package

All the steps which have been previously described have been included in a PL/SQL package, routingtable_pck (the interface is shown in Appendix B). The package body has 1797 lines of code.
PL/SQL is a proprietary (Oracle) language; the code is executed at the server-side. PL/SQL can be embedded in other languages such as JAVA, C, PERL, etc. A PL/SQL package is stored in its compiled form. The parsing of SQL queries is performed only at compiling time.

When a procedure of a package is called, first Oracle gets the package and loads it into memory if it is not already there. So performance is improved as parsing SQL queries can be quite time consuming depending on the complexity of the query.

By using PL/SQL one avoids overloading of the network by very long sequences of SQL queries. Also the maintenance of the routing tables is easier. Whenever there is a change in the CONNECTIVITY TABLE, ROUTING_TABLE and DESTINATION_TABLE related to DAQ or TFC system are recreated.

Generating a routing table is performed using 4 functions of routingtable_pck.

1. The first function creates and filled the AGGREGATED_LINKS and LINK_PAIRS tables.
2. The second function finds all the routing paths which start from the given devices using the logical view. These are stored in the PATH_LINE_TEMP table. STARTEND_TEMP is also filled with the two first and the two last nodes. It will be used to select the right port interfaces.

3. The third function maps the start (the first link) and the end (last link) of the path with PORT_PROPERTIES.portid with all the checks (same link type, bidirectional link used, link used or not) and inserts them in ROUTING_TABLE_TEMP. One routing path is selected by (destination, network interface) among the valid paths, i.e. where no link is disabled or broken. Set routingpathused=1 to the selected routing paths.
4. The fourth function deletes the old entry related to the given switch and inserts all the results in the tables PATH_LINES and ROUTING_TABLE.
6.2.6 Completeness of the algorithm

The routing algorithm finds all the paths less than M (less than 10 in the context of LHCb). The proof lies on the “join” operator reliability. Figure 57 illustrates the concept. If a valid path is not found with a length less than M, it means that during the join operation the code could not find a pairs of links which matches the current path. It means that this pair of link is missing. So it means that this pair of links is not in the LINK_PAIRS table which is the result of a self-join with constraints of the AGGREGATED LINKS TABLE. The join operator in SQL is known to be reliable. So if this pair of links is not in the table, it means that the pair of links fails to verify the constraints, which is in contradiction with the fact that is a valid path.

[image: image7.jpg]Join + constraints

LINKPAIRS table

Nodet] - —> F
Node 1 | - —> Goon

Figure 6. Concept of finding the paths. The path starting from Node 1 to Host Node i+2 is a routing path. The other path ending at Node i+2 is still not finished, we go on if the i+3<M.

6.3 Extensions of the routing table algorithm

6.3.1 Partitioning

6.3.1.1 Destination table
In Chapter 4, section 4.3, partitioning has been handled using the destination of the TFC switch. A destination table of device A consists of the following columns (which are almost similar to ROUTING_TABLE):

· Deviceid of the node1 (which starts the path). This node corresponds to the deviceid of the functional device for which the destination table is generated. For instance, if we generate the destination table of the TFC switch, the value of this column corresponds to the deviceid of the TFC switch.

· Portid of the node1 (from which the link starts). This column permits retrieving information about the port which starts the path. In the case of the TFC switch, it corresponds to the port IDs of the output ports.

· Portid of the last node (at which the link ends) allows retrieving information about the port which ends the path. In the case of the TFC switch, it corresponds to the port IDs of the input ports of the destination devices, i.e. the TELL1 boards.

· Deviceid of the destination devices.

· System name which corresponds to the list of subsystems of which the destination device is part.

· Pathused which indicates if the path is functional (1) or not (0). For instance if a device is broken and not replaced or if a device needs to be excluded for debugging reasons, for instance, all the paths which go through that device are disabled, i.e. pathused=0.

All the destination tables which are generated are stored in DESTINATION_TABLE.
6.3.1.2 Algorithm principles
The routing algorithm has been adapted to generate a destination table as the concept is similar. The main difference is that the destination table can be generated for a host node. So the computation of the path weight is slightly different. However the algorithm principles are the same in both cases.

1. The first step is to determine whether the destination table is for a host or intermediate node.

2. If it is a host node, the path weight should be equal to 3 =(1 +2)

3. If it is an intermediate node, the path weight should be equal to 2 = (0+2). It is the same as for the routing tables.

Also all the paths are inserted. In other words, it is possible to have several paths which start from the same pair (deviceid of the first node, portid) unlike the routing tables.

The functions which are used to generate the destination tables are also included in the routingtable_pck PL/SQL package.

6.3.1.3 Example of the TFC switch

Figure 11, in Chapter 1, shows the connectivity of the TFC. The readout supervisors (ODIN) and the TELL1 boards are respectively the sources and destinations. Thus they are host nodes, the other devices are intermediate nodes.

All the links in the TFC system are unidirectional. The TFC switch can only send information to TELL1 boards, which are the only possible destinations in that case.

A readout supervisor can not be a destination as it is a source (it sends information but does not receive any data via the TFC switch). The destination table of the TFC switch will contain around 350 distinct destinations (equal to the number of TELL1 boards).

The TFC system needs to know the output ports of the TFC switch which drive the subsystems in the partition to configure the switch.

Consider the following example. An extract of the TFC destination table is shown in Table 14.

	TFC output port nb
	Port way
	Port type
	Destination device name
	System ID of the destination

	0
	2
	None
	VELO_L1FE_04_00
	1155

	0
	2
	None
	VELO_L1FE_04_01
	1155

	1
	2
	None
	VELO_L1FE_07_04
	1365

	1
	2
	None
	VELO_L1FE_07_04
	1365

	2
	2
	None
	RICH1_L1FE_09_08
	4845

	2
	2
	None
	RICH1_L1FE_08_02
	4845

	3
	2
	None
	RICH2_L1FE_00_01
	5865

	3
	2
	None
	RICH2_L1FE_00_02
	5865

	10
	2
	None
	L0MUON_L1FE_00_03
	98355

	10
	2
	None
	L0MUON_L1FE_00_01
	98355

	10
	2
	None
	L0MUON_L1FE_00_02
	98355

	4
	2
	None
	IT_L1FE_09_00
	26445

	4
	2
	None
	IT_L1FE_09_00
	26445

	4
	2
	None
	IT_L1FE_09_00
	26445

	5
	2
	None
	TT_L1FE_03_01
	28905

	5
	2
	None
	TT_L1FE_03_01
	28905

	5
	2
	None
	TT_L1FE_03_01
	28905

	6
	2
	None
	OT_L1FE_00_12
	13485

	6
	2
	None
	OT_L1FE_00_11
	13485

	6
	2
	None
	OT_L1FE_00_10
	13485

	7
	2
	None
	OT_L1FE_02_05
	16095

	7
	2
	None
	OT_L1FE_01_21
	16095

	7
	2
	None
	OT_L1FE_01_09
	16095

	8
	2
	None
	PRS_L1FE_03_00
	915

	8
	2
	None
	PRS_L1FE_01_00
	915

	8
	2
	None
	ECAL_L1FE_02_00
	795

	9
	2
	None
	ECAL_L1FE_04_00
	795

	9
	2
	None
	ECAL_L1FE_03_00
	795

	11
	2
	None
	HCAL_L1FE_01_01
	885

	11
	2
	None
	HCAL_L1FE_01_00
	885

	12
	2
	None
	MUON_L1FE_01_00
	71355

	12
	2
	None
	MUON_L1FE_01_00
	71355

	13
	2
	None
	MUON_L1FE_01_00
	73365

	13
	2
	None
	MUON_L1FE_07_00
	73365

	13
	2
	None
	MUON_L1FE_07_00
	73365

	14
	2
	None
	L0CALO_L1FE_00_00
	105465

	14
	2
	None
	L0CALO _L1FE_00_01
	105465

	14
	2
	None
	L0CALO _L1FE_00_02
	105465

	15
	2
	None
	L0DU _L1FE_00_01
	119685

	15
	2
	None
	L0DU _L1FE_00_02
	119685

	15
	2
	None
	L0DU _L1FE_00_03
	119685

Table 14. Extract of the TFC destination table.
For example, for a partition consisting of {VELO, RICH, OT_A}, the SQL query:

select distinct port nb from DESTINATION_TABLE r, FUNCTIONAL_DEVICES t, SUBSYSTEM_LIST l where r.nodeid_start=t.deviceid and t.devicename=’TFC_SWITCH’ and l.system_name=’VELO’ and mod (r.systemid, l.systemid) =0.

will only select the destination devices belonging to these subsystems. The result of the query is 0 and 1.

The same query is performed for RICH and OT_A so that each subsystem can be properly associated with 1 or two output ports of the TFC switch.

The selected destinations with their associated output port(s) are written in bold in Table 14.

6.3.2 Generating the DCHP config file

The destination table is generated for the DHCP server to get all the host nodes which can get their IP address from the given DHCP server.
It has been integrated in a Perl script which is described in the next chapter.

6.4 Other PL/SQL codes

Besides the PL/SQL package routingtable_pck, there are other PL/SQL codes which have been implemented to avoid embedding long sequences of SQL queries (essentially updates and insertions).
· UpdateDeviceHistory : a PL/SQL function
· UpdateBoardComponent: a PL/SQL function which updates the status of the microscopic devices (components of the board) according to the change of the status of the motherboard. (the status should be different from TEST)
· SwapTwoDevices: a PL/SQL function which swaps two devices and checks that this operation is allowed (for instance same number of ports connected and same device type).
· InsertSubsystem: A PL/SQL function which inserts a new subsystem and attributes it a systemID.
· ComposeFunctionID: a PL/SQL function which returns the function ID given a list of function names.
· DecomposeFunctionID: a PL/SQL function which returns the function names given a function ID.
· InsertIPaddress: a PL/SQL function which inserts an IP address. It is used when inserting a port of a device. There is a need to know if the IP address already exists or not. If not, it inserts it.
· UpdateIPaddress: a PL/SQL function which updates an IP address further to a mistype or a change. It performs the update for IPINFO, IPALIAS and PORT_PROPERTIES tables.
· TestUseBoardCpnt: a PL/SQL function which sets the status of the microscopic devices (components of the board) to TEST when the motherboard goes to TEST.
· InsertTestBoard: a PL/SQL procedure which inserts a test board. The name of a board test is automatically generated by the CIC DB.
· CreateTableSchema: a PL/SQL function which creates the CIC DB schema (tables, indexes and constraints).
· DropTableSchema: a PL/SQL function which drops the current CIC DB schema.
6.5 Conclusions

This chapter describes how routing and destination tables can be generated using the information stored in the CIC DB. The algorithm is based on two main concepts:

· Intermediate and host nodes to make the distinction between possible destinations for the routing table and also to put boundaries to the network of a subsystem

· Paths and path weights to compute the correct paths by avoiding cycles.

The algorithm implemented in PL/SQL is used mainly for fixed queries such as

· generating the routing tables of the DAQ switches,

· generating the destination table of the TFC switch for partitioning,

· generating the destination table of the DHCP servers to create the dhcp config file.

All the routing tables (DAQ switches) and destination tables (TFC switch and DHCP servers) are respectively in the ROUTING_TABLE and DESTINATION_TABLE. They are automatically updated.

It also describes the other PL/SQL codes which have been implemented when a query was too complex or implies too many checks. It was the case for some insertions and updates.
So the implementation of the database layer has been described over Chapter 5 and 6. The next chapter will focus on the object layer.

References

[1] M.R.Garey and D.S.Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1990. W. H. Freeman & Co. New York, NY, USA. 0716710455. 338 p.
[2] Gendreau M. An introduction to tabu search. In: Glover F, Kochenberger GA, editors. Handbook of metaheuristics. Boston, Dordrecht, London: Kluwer Academic Publishers; 2003. p. 37-54.
[3] Genetic Algorithm, http://en.wikipedia.org/wiki/Genetic_algorithm
[4] L.Abadie, Configuring the LHCb Redaout Network using a database, August 2006.

IEEE Transactions on Nuclear Science, June 2006, Vol. 53, number 3, Part I of three parts. 14th Conference on real time (RT 2005) Stockholm, Sweden, June 4-10, 2005. p995-1001.
� Temporary tables have no foreign key and no primary key. That is why LINK_PAIRS and AGGREGATED_LINKS seem disconnect from the schema. They are temporary tables as there is no need to keep their content.

