Chapter 7 Implementation of the object layer

Chapter 7 Implementation of the object layer
This chapter describes the object layer which consists of a set of libraries which helps in building autonomic tools to interact with the CIC DB. The first section presents the two Perl scripts I wrote to generate config files for the DHCP and DNS servers. I also present an example of autonomics setup to configure the DHCP and DNS further to a change in the DAQ network. The second part explains the implementation details of the CIC_DB_lib library, namely its API, its structure and its features. It is the core of the object layer as it provides functions to manipulate the information about connectivity and inventory/history. I implemented the library in such way that autonomics tools can be built on top of it by making it intelligent. The third part describes the implementation of the two bindings of CIC_DB_lib. I also discuss the issues during the implementation. Finally the last part gives an overview of the PVSS library (provided by the CERN PVSS Support group) built for recipes.
7.1 Use of Perl scripts to generate config files

7.1.1 DHCP config file

This section describes how the dhcp config file can be generated using the connectivity information stored in the CIC DB. This method will be used to configure the controls network interfaces of PCs in the farm, TELL1 boards and readout supervisors. The IP addresses for the data network interfaces will be attributed differently (but it is not covered in this thesis as it is not fixed yet).
7.1.1.1 Methodology

To create the dhcp config file, we use the following method [1]:
· Get the host nodes by generating the destination table of the given dhcp server name. Using the destination table (especially the portid of the last node) as described in Chapter 2 section 2.2.2.8, one can retrieve the PORT PROPERTIES, HW PORT PRORPERTIES and IPINFO tables, containing network information (MAC, IP and subnet addresses).

· Get the boot images. The boot image information is usually linked to the device type (CPU architecture, kernel version for instance). In most cases, all the farm nodes will have the same boot image, same remarks for the TELL1 boards (per subsystem) and the readout supervisors. However it may occur that a host has its specific boot image. To get the right boot image, we perform the 2 following steps:

· Step 1: look if the given host name has a specific boot image in the DEVICE_BOOTING_TABLE in the CIC DB. If we find an entry corresponding to this node, we select it. If not, go to step 2.

· Step 2: attribute it the boot image associated with the node’s devicetype. We get it from DEVICETYPE_BOOTING_TABLE.

· Getting the subnet ID. In the CIC DB, the subnet mask is stored instead of the subnet ID. However, one can compute the subnet ID given the subnet mask and the IP address.

For example:

IP address: 137.192.25.15 and Subnet Mask: 255.255.255.0

1. Convert the IP address and the Subnet Mask to binary formats:

IP address: 100001001.11000000.00011001.00001111

Subnet Mask: 11111111. 11111111.11111111.000000000
We consider these two numbers as 2 vectors (32x1).

2. Perform a point wise
 multiplication of the 2 vectors.

The subnet ID is then equal to 100001001.11000000.00011001.00000000
3. Convert it to decimal format : 137.192.25.0

Group the hosts by subnet IDs as follows:

 subnet 137.192.25.0 netmask 255.255.255.0 {

 group {

host pctest32 {

hardware ethernet 00:00:A2:11:25:B4;

fixed-address 137.192.25.15;

filename “lynx_boot_23.nbi”;

}

host { ... }
} }
 subnet ...
At this stage, we have all the necessary information to build the dhcp config file. The next subsection will focus on the implementation.

7.1.1.2 Generating and formatting the dhcp config file

[image: image1.jpg]Input : dhep server

name l

cicbe
Connectivity
Port

Boot image

Perl script

- SQL queries with XML
to get Hosts with:

IP@

MAC @

IP name
Subnet mask

Boot image

- Subnet ID computation (perl)
- append the output in the XML file

“dhep_options xml”
XML file (generic options)
ddns-update-style ad-hoc

“dhepd.conf’
dhcep config file
ddns-update-style ad-hoc

subnet 137.192.25.0
netmask 255.255.255.0
{
group {

host pctest32{

hardware ethernet 00:00:A2:11:25:B4
fixed-address 137.192.25.15
filename “lynxboost_test” 3}

|

XSLT

f———

Convert

to text

file +
apply

dhep
config
template

“dhcp_file xml” XML file (generic options + info per hosts)
<options>

ddns-update-style ad-hoc

</options

<options>.... </options>

<subnet><subnet|D>137.192.25 0</subnetiD>
<subnet_mask>255.255.255.0</subnet_mask>

<rowset>
<row><ethernet_add>00:00:A2:11:25:B4</ethenert_add>|
<ip_add>137.192.25.15<fip_add>
<ipname>pctest32</ipname>
<filename>lynxboost_test<filename></row>

<lrowset>

</subnet>

Figure 1. Implementation principles.

Figure 1 describes how the DHCP config file has been generated.

It is based on a Perl script. Perl is one of the most used languages for writing Linux scripts. Perl also includes a lot of packages (XSLT, DBI, etc…) and is very convenient for string manipulation. Also I am more familiar with Perl than with Python. For security reasons, SQL statements have been embedded in the Perl script directly. We did not want to include functions in the CIC_DB_lib (as mentioned in Chapter 3) which allow creating DHCP and DNS config files and make it accessible to anybody. These two Perl scripts will be used only by the DAQ network system administrators and they agree with this method and the choice of Perl.
Any time there is a change in the configuration of the network, the following steps should be carried out:
· The generic options are put in the “dhcp_options.xml” file provided with the application. There should one option per line. Referring to Figure 1, the generic options are written in red.

· Execute the Perl script, with the dhcp server name as input argument. It is case-sensitive. The Perl script performs three steps.
· It obtains the network information (IP and MAC addresses, subnet_mask and boot image) from the CIC DB using Oracle XML[2] features such as “xmlelement”

· It writes the results in the XML file “dhcp_file.xml”. The previously defined generic options are printed at the beginning of “dhcp_file.xml”. The result of the query is encapsulated in XML tags. The results are ordered by subnet ID.

· It generates the dhcp config file using XSLT. XSLT is used to convert the XML file obtained into a dhcp config file. To do so, there is an XSL file which reads the XML file. It converts the XML tags into words which are understandable by a dhcp server.

For instance, the XML tag <ethernet_add> is converted into hardware ethernet, <ipname> to host, etc.

The output of these operations is the dhcpd.conf. All the files created and used are located in the same directory. The dhcpd.conf is copied in /etc/... manually by the network administrator. It is for security reasons. The Perl script “dhcpCfg_generate.pl” can be found in Appendix C.
7.1.1.3 Excluding nodes
If for any reason, a host needs to be excluded from configuration by a given dhcp server, it can be disabled by setting FUNCTIONAL_DEVICES.nodeused to 0. This function will exclude all the links affected by this change (CONNECTIVITY.lkused set to 0) and as a consequence, will update the DESTINATION_TABLE.pathused to 0 if one link has been disabled in a path.
When a host is disabled in the table, the Perl script “dhcpCfg_generate.pl” needs to be rerun.
Then the hosts should be included back again. This has to be done because the host was disabled for generating a correct DHCP config file for a given DHCP server.

The following example illustrates this.

[image: image2.jpg]DHCP server 1 DHCP server 2

g

i

Switch _A

Switch_B Switch_C

Figure 2. Example of a topology where it is mandatory to exclude nodes.

Assume a connectivity situation as in Figure 2. There are two DHCP servers, DHCP server 1 and DHCP server 2. The DHCP server 1 configures nodes from node_1_1 to node_1_32 and DHCP server 2 configures nodes from node_2_1 to node_2_32.

Both DHCP servers 1 and 2 could configure all the nodes. Therefore the destination table of DHCP server 1 is the same as that of DHCP server 2. It will contain all the host nodes, i.e. from node_1_1 to node_1_32 and from node_2_1 to node_2_32. So the destination table for both DHCP servers 1 and 2 will contain too many reachable hosts. Consequently the generated dhcp config file may be wrong depending on the network policy
. So it is important to provide a solution if this case occurs. Then it will be up to the network administrator to decide what to do.
This problem can be solved by disabling hosts. The destination table of DHCP server 1 should contain only hosts from node_1_1 to node_1_32. Hosts from node_2_1 to node_2_32 must be excluded. When they have been excluded the Perl script “dhcpCfg_generate.pl” should be executed to generate the dhcp config file for DHCP server 1. Then the excluded nodes must be included back so that the dhcp config file for DHCP server 2 can be generated. An example of the C code
 is in Appendix D. It shows how this case can be handled.

In the same way, links can be disabled by updating CONNECTIVITY.lkused column.
In the previous example, another way to do could have been to exclude the link respectively between switch A and switch B (respectively switch A and C) to generate the dhcp config file for DHCP server 2 (resp. DHCP server 1).

7.1.1.4 Including nodes

The DAQ farm will grow over time as more PCs will be added. How will the generation of the dhcp config file be affected by the arrival of new PCs or new TELL1 boards?

The impact is rather slight as the new devices and their connectivity only have to be added to the CIC DB. The Perl script “dhcpCfg_generate.pl” should be rerun. If the insertion is done from PVSS, “dhcpCfg_generate.pl” can be automatically executed using a PVSS script.
7.1.1.5 Autonomics set up
The use of autonomics principles is reflected through 7.1.1.3 Excluding nodes and 7.1.1.4 Including nodes. The human intervention is reduced. Using the following setup, most of the reconfiguration steps are automated as illustrated by Figure 3. The user makes the changes on the DAQ network such as adding new farm PCs or updating IP addresses using PVSS panels. Then all the changes are saved in the CIC DB using the PVSS extension of CIC_DB_lib. It will dynamically update the routing and destination tables if needed. If the changes are successful the PVSS panel asks for the list of DHCP servers to the CIC DB. Then using DIM and this list, the Perl script “dhcpCfg_generate.pl” is automatically executed on each DHCP server.
So in this setup, the user did not have to recreate the routing tables or to rerun the “dhcpCfg_generate.pl manually.
[image: image3.jpg]—— PYSSCLDBlib
DHCP server 1 DHCP server 2 o

[C] DMServer

Rerun
dhepCly_generate.pl

Modify the DAQ connectivity

connectivity Successful
changes

— e — GCet the list of

DHCP servers
eturn list of

| HCP servers
~(DHCP server 1and 2

Operator ECS (PVSS)

Figure 3. An autonomic setup to update the dhcp config file using PVSS.

7.1.2 DNS files

The DNS provides the correspondence between IP address and IP name. Its principles have been described in Chapter 2 section 2.2.2.9. We have tried to adopt a similar approach as for the DHCP config file. The information which needs to be predefined is the name of the domain, the name of the authoritative DNS server and the maximal number of times that a DNS config file can be recreated in one day. They are pretty static so they are saved as global variables in the script.

To create the DNS files, we have split the code into 2 parts, one part which generates the forwarding file (given an IP name, retrieve the IP address) and the second part which generates the reverse file (given an IP address, get the IP name). The whole Perl script “dns_generate.pl” can be found in Appendix E.

7.1.2.1 Outline of creating the DNS forwarding file

This subsection describes how the DNS forwarding file is generated. The following steps have been performed:
· Get the next serial. The serial identifies uniquely the dns file. Its value should be the same for the two set of files (forwarding and reversing as presented in Chapter 2 section 2.2.2.9). The serial is obtained by concatenating the current date (year/month/day) and a number. This number starts with 0 and is incremented whenever the DNS set of files has been re generated during a same day. In the example shown below the serial is equal to 200607130. 2006 is the year, 07 is the month, 13 is the day. Then the last digit is 0 (it is the number which means that it has been created only once and it was on July, 13rd 2006). This number should be less than P, maximum number to generate the DNS set of files (forward and reverse files), fixed by the network administrator. The default value (common value) is 9. If the serial is invalid, the program exits (and does not go through the reverse part).

The two types of files start with some generic options showed below:

$TTL 86400; minimum TTL (time to live) in seconds as of bind 8.2
name of the domain “.” is important name of the DNS server
ecs.lhcb. IN SOA dns01.ecs.lhcb. root.localhost. (
#some generic options stored in the XML generic options file
 200607130 ; serial

 3h ; refresh

 3600 ; retry

 4w ; expire

 3600 ; ttl

)

· Use of XML in the SQL queries to get results formatted as followed:

<row><ipname>value</ipname><ipadd>value</ipadd><function>{NS,A,CNAME}</function></row>. Using regular expressions, the domain name is taken off from the ipname.

· Use of XSLT code to convert the XML file and the XML generic option file.
[image: image4.jpg]Exit with invalid serial

Get the next serial

Get the list of IPnames/IP@s of the other network|
equipment in the controls network

Resuilts printed in
1
an XML file I

Using XSLT, convert the XML file and the XML options
files into a dns forwarding file

Dns Forwarding file

XSLT sheet

Figure 4. The principles of creating the DNS forwarding file. @ stands for address.
Figure 4 describes the previous steps performed to create the DNS forwarding file.
7.1.2.2 Outline of creating the DNS reversing file

This subsection describes how the DNS reversing file is generated.
[image: image5.jpg]Get the list of different of IP@/IPname of the other network
equipment in the controls network and their subnet

Get the list of IP@/IPname of the DNS servers and
format it to the zone

Generate an XML dns reverse file per subnet

Using XSLT, convert the XML file and the XML options
files into a dns reversing file

One Dns Forwarding file per subnet

Figure 5. Implementation guidelines of the creating the dns reversing file. @ stands for address.
Figure 5 presents the implementation guidelines of creating the dns reversing file.

· Get the value of the serial parameter. It is equal to the one in the dns forwarding file and it is passed as an input parameter.

· Get the list of the IP addresses and IP names of all the equipment part of the control network with their subnet ID, using XML embedded in SQL. Store the results in an array.

· For each different subnetID, get the list of IP addresses and IP names of all the DNS servers (even if they are not in the given subnet) and format it for the subnet ID, like:

<row><ipadd>05.100.60.137.</ipadd> <ipname>DAQ_CTRLPC_60_01.ecs.lhcb.</ipname> <function>NS</function> </row>

The IP addresses should be reverted. For instance, if the IP address is 123.23.56.45, it becomes 45.56.23.123. A dot should be put at the end to prevent from appending the subnetID at the end of IP address.

For the authoritative DNS server or also master DNS server (static variable in the script), it is formatted as follows:

<row><ipadd>137.56.in-addr.arpa.</ipadd> <ipname>DAQ_CTRLPC_10_01.ecs.lhcb.</ipname><function>NS</function></row>

In the previous example, 137.56.0.0 is the subnet ID. The “0” is taken off and replaced by “in-add.arpa”. Between <ipname> and </ipname>, there is the full name of the master DNS with the zone name (ecs.lhcb). The dot at the end is essential. If it is omitted, the zone name is appended to the name.

Add all the IP addresses and IP names which are in the given subnetID.

Using XSLT and the xml generic options (same as the previous one), convert the xml file into a reverse dns file for the given subnet ID.

The last step is iterated for all the subnet IDs. In the case of LHCb controls network, there are 4 subnets.

7.1.2.3 Autonomics setup

When new PCs are added, they will obtain IP addresses, IP names and eventually IP aliases. The Perl script “dns_generate.pl” must be rerun to add these new entries (IP address, IP name) in the set of dns files. The same problem occurs when new network equipment are no longer used. However there is also the dhcp config file which needs to be updated too. So the Figure 6 suggests an autonomics setup which updates both the dhcp config file and the dns files further to a change in the DAQ network using PVSS. The user modifies the DAQ network setup using PVSS. Then automatically, the DHCP and the DNS servers are reconfigured according to the new setup.

[image: image6.jpg]— PVSSCLDBLIb
DM

[] DMServer
DNS server 2

DHCP server 2 DNS server 1
DHCP server 1

Rerun
dhepCly_generate.p! Rerun

dns_generate.pl

Modify the DAQ connectivity

connectivity Successful
changes

— U — Get the list of DHC|

+DNS servers
eturn list of

HCP +DNS servers
~ (DHCP server 1 and 2
DNS server 1and 2
Operator ECS (PVSS)

Figure 6. Autonomics setup for the configuration of the DNS and DHCP servers further to a change in the DAQ network setup.
7.2 CIC_DB_lib, a C-library to query the CIC DB

7.2.1 Implementation guidelines

7.2.1.1 The CIC_DB_lib API

The purpose of the API is to allow a non DB expert user to interact with the CIC DB in a safe mode and without any knowledge of the table schema. So the database aspects are hidden from the applications. It also provides a standard interface to the CIC DB. To guarantee database integrity, all the functions of the API are based on DML statements [2], i.e. the non DB-expert user is not allowed to drop a table as a table can be used by more than one application in the LHCb experiment.

To ensure that the library will provide all the information required by the different users of the CIC DB, the first step was to design the API.
The API is split into four parts (see Appendix F for the C interface):

1. functions to query the content of the CIC DB (based on the SELECT statement);

2. functions to populate the CIC DB(based on the INSERT statement);

3. functions to update information stored in the CIC DB (based on the UPDATE statement);

4. functions to delete information stored in the CIC DB (based on the DELETE statement);
The API has been built using the use cases defined in Chapter 4 section 4.3. Then it has been improved and completed through discussions with the users of the CIC DB. As agreed within the LHCb collaboration, anybody should be able to have access to and to use any functions. There are no users’ privileges. All the SQL statements are hidden as the user is a non DB expert.

7.2.1.2 Use of OCI

CIC_DB_lib is based on OCI (Oracle Call Interface) [3] to access the CIC DB and on C as the programming language. The main advantage of the OCI interface is that it provides a lot of functions to interact with a database. It is faster than other interfaces (e.g. OCCI) [4] as these are built on top of OCI. It is more stable. It is recommended by Oracle for access to the database. So any type of statement can be done using OCI. However it is a quite complex interface. An example of how to OCI is used is shown in Appendix G.
7.2.1.3 Output format of a SELECT query

The return value of functions based on SELECT statements is formatted as follows (the LHCb Online group has agreed with this format).

· The result of the SELECT is known to be one single row, then the return value is formatted as follows: |column_name: column_value (column_type) | …|, where | is a delimiter. It includes all the functions which return a row of a table given the primary key (e.g. deviceid) or another candidate key (devicename). For example, GetFunctionalDeviceTypeRow returns the row of a given devicetype. The main advantage of this format is that the signature of this type of functions is the same after adding or dropping one column in the table.

· The result of the SELECT returns a group of rows. The return value is either an array of int which correspond to the primary key of the table such as GetPortIDPerDevID which returns all the portids of a given deviceid. Or it can be a list of elements formatted as follows. Each row of the list is separated by ‘\0’ so that the mapping into vector of strings is easier (for PVSS and Python).
7.2.1.4 Use of a memory cache for INSERT and UPDATE

For INSERT and UPDATE statements, a cache has been implemented to allow users to insert and update many rows in one go (bulk collect feature). It is well known that it is faster to insert multiple rows in one go than one row at the time.

To do so, a cache (using buffers) has been implemented to store all the rows which need to be inserted or updated. The user has to set the parameter last_rows (input parameter in the insert and updates functions) to 1 to indicate that it is the last row which will be inserted or updated. So as long as this parameter is equal to 0, nothing will be inserted nor updated in the CIC DB. When this parameter is set to 1, all the rows are stored using OCIBindArrayOfStruct and sent to the CIC DB.

When inserting, deleting or updating many rows, it is advisable to commit not too often but not after too many rows either. In the literature, a commit is advised to be performed after very 10 000 rows. This value depends on the size of the rollback segment, a parameter set by the DBA. The more rows are updated without making a commit, the more space Oracle will need to save the content in case you rollback. On the opposite, if a commit is done frequently, it negatively affects the performance. A commit implies a lot of work such as synchronizing all the caches of all the current sessions. To make sure that a commit will not be performed after 20,000 rows or more, inserts or updates in the CIC DB are forced if the cache contains 10,000 rows, even if it is not the last row. So every 10,000 rows the cache is reinitialized. The database currently used is maintained by the Central Database Support. They advised me to commit every 10,000 rows.
This value is set using #define MAX_ROWS 10,000. It is included in a header file “db_param.h”, where all global variables related to the database are defined. So it is easy to update if there is any change in the rollback segment size.

7.2.1.5 Querying paths between 2 devices

The API of CIC_DB_lib includes functions which enable users to get detailed paths between two devices or a device and a device type which are part of a same subsystem.

The first idea was to compute these paths using PL/SQL. However generating a destination table containing the detailed paths between 2 devices (which both have one subsystem in common) using PL/SQL is not the best method for two reasons:

· Getting the paths between 2 devices is dynamic, in the sense that the name of two devices is not known in advance. Besides there are around 10 subsystem groups who can want to query paths between different types of devices. The DESTINATION_TABLE will contain too many rows and will be not easy to manage if we generate a destination table for each query “Get the paths between device A and device B”. Moreover nothing can be predefined contrary to generating the destination tables of the DCHP servers or the TFC switch.
· There is a performance issue. Getting paths between devices will be used to test links and to configure parameter values. Tests have been done between an implementation in C and PL/SQL code. C code was much faster as it has better memory and loop management.

Therefore algorithms to get detailed paths between device A and device B or device A and a device type have been implemented in C.

The main steps are:

1. Load all the links which are part of the same subsystems as device A. It is sufficient to load the links which are part of the same subsystems as device A as device A and device B are in the same subsystem. In other words, a part of the CONNECTIVITY table is loaded in cache.

2. Load the microscopic links of all the devices which are in the same subsystem as device A. So a part of the MICROSCOPIC_CONNECTIVITY is loaded in cache. Depending on the level of the granularity this table can be empty.
3. Find all the paths starting from device A and ending at device B. A path cannot contain the same device twice and the pattern intermediate node-host node-intermediate node is rejected. It is the same as developed in PL/SQL package. Also there is a check that the combination (input, output) is valid. If data arriving at a given input can go out from the given output, then the path is kept, otherwise, it is rejected. It is done using a C function which uses the MICROSCOPIC_CONNECTIVITY table loaded in memory to verify if the given (input, output) can communicate. As a remark, if the MICROSCOPIC_CONNECTIVITY table is empty, the function is not called as the given (input, output) pairs are always valid. The main advantage of this check is it is independent of the board connectivity. The same algorithm to get the macroscopic paths is applied to check that the given combination (input, output) is valid.

4. Format and return the detailed paths if there are any.

5. If not, we reverse the query. It means applying the previous steps by inverting device A and device B so that the results are independent of the direction of the query. Indeed we do not assume that the user gives the device A and device B in the right order. For instance, if a given dataflow is from VELO_hybrid_09 to VELO_TELL1_12. The user may ask get the paths between VELO_TELL1_12 and VELO_hybrid_09. The step 3 will find no paths. The links stored in the CONNECTIVITY table need to be reverted to find the correct paths.
If whatever the query is, the subsystems are fixed, then there is no need to redo step 1. However, if new links have been added, a reload can be requested.

The query “get all paths through a device” is based on the same steps.

In any case, there is a timeout to avoid long computation of paths. It can happen if the user sets all the links to bidirectional and if there are a lot of devices with more than 100 ports.

7.2.1.6 Error Handling

There is error handling for the following errors:

· Unsuccessful malloc if a memory allocation fails;

· NO_ROWS_SELECTED, if the result of the SELECT statement is empty;

· BUFFER_TOO_SMALL, if the size of the buffer to which the result should be copied;

· COULD NOT UPDATE ALL THE ROWS with the name of the function which fails. This is the case when some of the rows have not been updated during a bulk update. It is the case if the where one condition is not satisfied such as mistypes. For instance,

Update functional_devices set nodeused=1 where devicename=’VELO_TLL1_23’. If VELO_TLL1_23 does not exist, this update will not work.

· COULD NOT INSERT ALL THE ROWS with the name of the function which fails. It means that some of the rows have not been inserted. This is the case when there is also a mistype. The device RICH1_TELL1_10 is of type RICH1_TELL1. When the user has inserted this device, he has attributed RICH1_TELL as device type, which does not exist, instead of RICH1_TELL1.
The Oracle errors explaining why a statement failed, such as a violation of a constraint or parent key not found are returned using the OCIError function. The complete Oracle error is returned in ErrMess, present in all functions of CIC_DB_lib. Besides the error which causes the failure, the name of function is also given.

7.2.1.7 Building CIC_DB_lib

The CIC_DB_lib contains 157 functions and 58544 lines. It consists of 4 header files and 27 source files. The library has been compiled with MCV.Net v7.1 on Windows and gcc version 3.2.3 20030502 (Red Hat Linux 3.2.3-56) on Linux.

All the functions are documented and available on the LHCb Online web site [5].

7.2.2 Features of CIC_DB_lib

The following features have been checked to comply with building autonomic tools.
7.2.2.1 Memory management
One of the common problems when implementing a library is to know which application should allocate the memory. To avoid any problem related to memory allocation, the application which uses CIC_DB_lib should allocate the memory. CIC_DB_lib will not allocate memory. However the application or the user will have to provide size of allocated buffers. For each function returning a list of devices, the user needs to specify the allocated size of the buffer in which the result should be put. If the size is too small, I put the required size in the variable which indicates the buffer size. If it is sufficient, I also put the real size needed here so that the application does not have to loop uselessly to extract the elements of int* or of char* as described in 7.2.1.4.

Example of use:

Int GetHistoryOfFunctionalDevice(char* functional_devicename,char* functionaldevice_history, int & len_history, char* min_date, char* max_date, char* ErrMess)

This function returns the history of a given device in functionaldevice_history. The application which calls this function has to put the allocated length of this parameter in len_history.

If the returned result can not be copied in functionaldevice_history, the size needed is put in len_history and I returned in ErrMess, BUFFER_TOO_SMALL. If the allocated size is enough, I copy the result in functionaldevice_history and specify the length in len_history.
7.2.2.2 Security

There was no security issue for the DB access as the CIC DB will be installed in a local network that is not accessible from the outside world. So there was no need for data encryption for instance. The only thing is that the user needs to connect the CIC DB by providing DB_name, login and password.
7.2.2.3 Consistency

7.2.2.3.1 Insert, update and delete information by block

Insert, delete and update functions have been implemented to ensure the consistency of the data in the CIC DB. The first thing is the block (a group of elements which needs to be updated or inserted or deleted within the same transaction) insertion (or update or deletion). It means that groups of data are inserted (or deleted or updated if required) together, using the same function. All these queries are part of the same transaction. Using this method, it avoids the user from calling several functions and it also prevents from forgetting to insert or update data.

Consider the following scenario. A user wants to insert a functional device. According to the table schema, inserting a functional device implies an insert in the HARDWARE_DEVICES, in the FUNCTIONAL_DEVICES and in the DEVICE_HISTORY tables. To allow efficient data consistency, the 3 inserts are done within the same SQL query. It consists of three consecutive SQL inserts. The main advantage is that if one of the inserts fails, the whole inserts fails. This is because of the use of foreign key constraints. Indeed, the first statement inserts into HARDWARE_DEVICES. Then the second inserts in FUNCTIONAL_DEVICES only if the first insert is successful. Finally the third ones inserts in DEVICE_HISTORY which can be done only if both previous inserts are successful.

The input parameters of InsertFunctionalDevices include all the table columns of HARDWARE_DEVICES and FUNCTIONAL_DEVICES.

Inserting by block is also used for port. If it is a DAQ device (i.e. it has an IP address), information will to be inserted in FUNCTIONAL_PORT_PROPERTIES, HARDWARE_PORT_PROPERTIES and IPINFO tables within the same SQL block.

The same concept has been applied for the UPDATE.

In the API, there are functions to delete links, ports, devices and device types. The user cannot delete a device if he has not deleted the ports of the device before.

When an insert, an update or delete affect the TFC or DAQ connectivity, a PL/SQL function part of routingtable_pck package updates the content of DESTINATIONTABLE, ROUTINGTABLE and PATH_LINES tables.

7.2.2.3.2 Use of status diagrams for inventory

Inventory information requires a lot of checking to avoid inconsistency. To update the status of a device, there are three functions (and three for updating board component status):

ReplaceFunctionalDevice(char*devicename,char*

new_device_status,char*user_comments,char* status_datechange,char*serialnb_replacement,char*replace_date, char* ErrMess)

which allows the user to replace a functional device IN_USE by another hardware device (serialnb_replacement). The status of the hardware device which has been replaced must be specified (new_device_status). If the user sets serialnb_replacement to “none”, it means that the functional_device has status “NONE”.

SetToTestUseStatus(char* devicename, char* user_comments, char* status_datechange, char*serialnb_replacement, char* testboard_name, char*replace_date, char* ErrMess)

which allows replacing a functional device by another hardware device. The status of the hardware which was occupying the functional device is set to “TEST” and occupies a test board (testboard_name).

With these two functions any hardware device with status “IN_USE” can go to another status (TEST, EXT_TEST, DESTROYED or IN_REPAIR, SPARE).
UpdateHWDeviceStatus(char*devicename,char*new_device_status,char*new_location,char*user_comments,char* status_datechange,char*functional_devicename,char*ErrMess)

allows the user to set the status of a hardware device which does not have the status “IN_USE” to another status {EXT_TEST, DESTROYED or IN_REPAIR, SPARE, IN_USE}.

Using the following diagrams (see Figure 6, Figure 7, Figure 8, Figure 9, Figure 10) all the required checks can be made when updating the status of a device. Everything written in orange means it is an input parameter (provided by the user).

[image: image7.jpg]MUON_TELL1_45 IN_USE | Set its status with its board

Check that the components to the given one
functional (TEST, exc.). Update its
device is location

IN_USE initially

MUON_TELL1_45 IN_USE
Check that the
replacing hardware
device isa SPARE.

If yes, set its status
with its board

components to
IN_USE

Figure 7. Replacing a hardware device.

[image: image8.jpg]Set its status with its board
components to TEST status

MUON_TELL1_45 IN_USE

Check that the

functional Check that the given test
device is board is free. Set its status
IN_USE initially to IN_USE

Set nodeused TEST_BOARD_12 IN_USE
to 0

’| MUON_TELL1_45 NONE

Figure 8. Setting the status of a hardware device to “IN_USE”, with no replacement.

[image: image9.jpg]Set its status with its board
components to TEST status

MUON_TELL1_45 IN_USE

Check that the

functional Check that the given test
device is board is free. Set its status
IN_USE initially to IN_USE

TEST_BOARD_12 IN_USE

MUON_TELL1_45 IN_USE
Check that the

replacing hardware
device isa SPARE.

If yes, set its status
with its board

components to
IN_USE

Figure 9. Changing the status of a hardware device from “IN_USE” to “TEST”, with replacement.

[image: image10.jpg]Set its status with its board
components to TEST status

MUON_TELL1_45 IN_USE

Check that the

functional Check that the given test
device is board is free. Set its status
IN_USE initially to IN_USE

Set nodeused TEST_BOARD_12 IN_USE
to 0

’| MUON_TELL1_45 NONE

Figure 10. Changing the status of a hardware device from “IN_USE” to “TEST”, with no replacement.

[image: image11.jpg]MUON_TELL1_45 NONE

Check that the given
functional device is in

Check that the given NONE status.

hardware device is
not in {DESTROYED
JIN_USE}

If yes, set its status to
IN_USE and its board
component too

If yes, set its status to
IN_USE

MUON_TELL1_45 IN_USE | get nodeused to 1

Figure 11. Updating the status of a hardware device to “IN_USE”.

Each status change is inserted into the DEVICE_HISTORY table by calling functions from the CIC_DB_lib.
7.2.2.4 Concurrency

Functions including insert or update statements have been tested in multi-user environment. In other words, different processes have executed the same function with different input parameters. This check was made to ensure that there was no blockage.

The tests have been performed on Windows using a C application which is based on the CreateProcess function. This function allows executing a function with specific command lines.

In fact, the different insert or update statements which correspond to a transaction were executed sequentially. During the tests, the “commit” or “rollback” statements were essential as it they prevent a SQL statement from blocking.

Through these tests, I could notice a problem when an Oracle sequence is created dynamically (in the routingtable_pck) and then it is rewound to 1 for the next call. The problem was that one of the functions was using the sequence and the other one wanted to rewind. Then the two functions raise an Oracle error. The problem is that Oracle sequences are the same and common to all the sessions unlike temporary tables which are bound to a session.
7.2.2.5 Autonomics

CIC_DB_lib has been implemented so that the tools which use it can reduce the human intervention and be self-adaptive in case of changes in the connectivity or the inventory.

This has been achieved by

· understanding the system (the architecture, the dataflow, what is allowed what is not)

· anticipating the different failures or changes which can happen (devices or links out of order, swapping two devices, etc.)

· providing the maximum of flexibility (possibility to test a part of a system by disabling/enabling some links or some devices, etc.)
7.2.3 Issues

The difficulties which occur during the implementation of the library were the following:

· Define a complete API using the use cases. As the subsystems were built not at the same time, not all the use cases have been given at the same time. So the functions also have not been implemented at the same time.

· Best way to send back the results of a retrieval query, especially regarding paths so that the user or the application can easily extract and use the information required.
7.3 Bindings
7.3.1 Implementation of the PVSS CIC_DB_lib

A PVSS extension of the CIC_DB_lib has been implemented to permit interactions with the CIC DB from PVSS.

It has been implemented using GEH [6]. For each function of the CIC_DB_lib, a wrapper has been written based on TextVar and IntegarVar C++ classes. There is one source file which contains all the wrappers. It has 10770 lines. The PVSS interface has been included in Appendix H.

The code below shows an example of the PVSS wrapper for the function DBConnexion. It is a function used to connect to the CIC DB.
DBConnexion(char* dbname,char* login,char* passwd,char* ErrorMess) :

/**/

/**

 * Connect to the database taking 3 arguments and returning an integer value.

 * @param server : name of the database.

 * @param usr : user login.

 * @param pwd : user password.

 * @param errMess : return the ErrorMessage in case of failure (otherwise NO_ERRORS in + fct name)

 * @return 0 if the disconnection is successful

 */

/***/

IntegerVar* PVSSDBConnexion(TextVar* server,TextVar* usr,TextVar* pwd,TextVar* errMess)

{

static IntegerVar c=0;

std::string dbname = server->getValue();

std::string login = usr->getValue();

std::string passwd = pwd->getValue();

int len_buffer=600;

char* ErrorMess=new char[len_buffer];

c=DBConnexion((char*)dbname.c_str(),(char*) login.c_str(),(char*) passwd.c_str(),ErrorMess);

errMess->setValue(ErrorMess);

delete [] ErrorMess;

return &c;

}

The extension exists both on Linux and Windows.

However I have encountered a compiler version problem. On Windows, Microsoft Visual 6.0 has to be used to compile it as the GEH has been built using this version.

Then on Linux, I have to use the compiler gcc version 2.96 20000731 (Red Hat Linux 7.3 2.96-113), an old version as the GEH has been compiled with this version. It was also not easy to get such a machine with this compiler version.

All the functions are documented and available on the LHCb Online web site [5].

7.3.2 Implementation of the Python CIC_DB_lib

There is also a Python binding. It is used by CDBVis, which will be explained in the next chapter. To interface it in Python, I used Boost [7]. This is an open source project which allows any bindings from C++ to Python. It is very efficient especially to manage and convert C pointers into Python objects. Boost has been integrated in Gaudi which is an LHCb Computing framework. The main advantage to use Boost integrated in Gaudi is the maintenance of the module and the integration in the LHCb environment.

Here also I had to write a wrapper for all the functions of the CIC_DB_lib.

The result is a module (lib) cicDBpython which can be used in Linux and Windows. In a python script, the library can be used by doing “import (lib)cicDBpython”.

There was a need to implement two classes CICDB and CICDBEXCEPTION, to provide convenient error handling.

The attributes of CICDB are the connection parameters i.e. DB name, login and password. The methods of CICDB correspond to the functions implemented in the CIC_DB_lib. The CICDB class is presented in Appendix I.

The code below shows an example of the wrapper for the

DBConnexion(char* dbname,char* login,char* passwd,char* ErrorMess). It is the function used to connect to the CIC DB.
int CICDB::PyDBConnexion()

{

int c=0;

int len_buffer=1000;

char* ErrorMess=new char[len_buffer];

string ErrorMess_copy;

 c=DBConnexion((char*)_dbname.c_str(),(char*)_login.c_str(),(char*)_passwd.c_str(),ErrorMess);

 if(c!=0)

 {

 ErrorMess_copy=ErrorMess;

 delete [] ErrorMess;

 throw CONFDBEXCEPTION(ErrorMess_copy);

 }

 delete [] ErrorMess;

return c;

}
Here I had two main problems:

· Handling of the in-out parameters
 as it does not exist in Python. Some of the results have been concatenated. For instance, the C function

int GetAllPathsPerDevice (char * systemnameList, char * devname, int & len_array, int * lkid_list, int * pathid_list, int * link_pos_list, int reload_connectivity, int delete_connectivity, char * ErrMessage)
becomes in Python,

vector< string > CICDB::PyGetAllPathsPerDevice (string systemname, string devicename, int reload_connectivity, int delete_connectivity).

The return value of this function is a vector of strings. Each row of this vector corresponds to the concatenation of pathid_list| link_pos_list|lkid_list|

· Compiler and Python version. It requires MCVNet v7.1 on Windows. It did not work with the previous version of Microsoft Visual because of Boost. Moreover the module cicDBpython can work only with Python 2.3.4 because of the Boost module.

Finally, all the functions are documented and available on the LHCb Online web site [5].
7.4 A PVSS library for recipes

The CERN PVSS Support has implemented a PVSS library to load and save recipes into/from PVSS. The documentation about the functions is included in the framework [8].

This library provides functions to load and save a recipe including versioning mechanism. It also includes functions to get the list of devices in a hierarchy, to get the list of available recipes (a device can be specified)

7.5 Conclusions

In this chapter, the object layer has been described. Two Perl scripts (“dhcpCfg_generate.pl” and “dns_generate.pl”) have been used to generate the config file for both the DHCP and DNS servers. The “dhcpCfg_generate.pl” script which creates the DHCP config file embeds PL/SQL function from the routingtable_pck to build the destination table.

CIC_DB_lib with its two bindings (PVSS and Python) enables non-DB expert to query, update and insert information about connectivity and inventory. Compiler version problems were the main issue when building these two extensions.

CIC_DB_lib has been built to permit to implement tools (which use it) to be adaptive and smart, as any autonomic tools by reducing human intervention. To get and save information about recipes, the CERN PVSS Support has implemented a PVSS library which can be used in PVSS panels.

The next chapter explains how these libraries have been integrated in the GUI layer.

References

[1] L.Abadie, Generating the DHCP config file using confDB, LHCb Internal Note, June 2006. LHCb-2006-038
[2] ORACLE, Oracle® Database, SQL Reference, 10g Release 2, December 2005. B14200-02.

[3] ORACLE, Oracle Call Interface, Programmer’s Guide, 10g release 2. ORACLE PRESS, OSBORNE. B14250-02, November, 2005. 1258 p.

[4] ORACLE. OCCI (Oracle C++ Call Interface) Programmer’s Guide, 10g Release 2 (10.2). ORACLE PRESS, OSBORNE, December 2005, B14294-02, 474p.
[5] CIC_DB_lib Documentation and its two extensions,
http://lhcb-online.web.cern.ch/lhcb-online/configurationdb/download_libraries.htm
[6] GEH, Generic External Handler

http://itcobe.web.cern.ch/itcobe/Projects/Framework/Download/Components/GenericExternalHandler/welcome.html
[7] Boost Python, http://www.boost.org/libs/python/doc/
[8] PVSS library for recipes,

http://itcobe.web.cern.ch/itcobe/Projects/Framework/Download/welcome.html

� Point wise multiplication is as follows. Consider two vectors v(x,y) and u(x’,y’). The point wise multiplication of vectors v and u is another vector z(xx’,yy’).

� Depending on the network setup, it does not matter if the dhcp config file contains more hosts than needed as the DHCP server will never get a BOOT request from them.

� It is written in C because it calls functions part of the CIC_DB_lib, namely to disable and enable the hosts)

� By in-out parameters, we mean an input parameter whose value is changed by the function and is returned. It is both input and output parameters.

