Chapter 8 Structure of the GUI layer
This chapter describes the different GUIs which have been built on top of the object layer. First we explain the features and the implementation principles of CDBVis, a graphical editor to navigate through the CIC DB. Secondly, we explain how the XML config files generated by the two Perl scripts are converted using XSLT to config files which are accepted by the DHCP and DNS servers. Finally we present some PVSS panels which have been implemented to configure modules and handle partitioning. We also show that both information about configuration parameters and connectivity are combined by the ECS so that a single-click system can be built.
8.1 CDBVis, a graphical editor
8.1.1 Features

CDBVis [1] enables a non-DB expert user to view and insert connectivity information.

Its features are the following ones:

· Creation of device types, devices, ports and link types and links per subsystem, mass insertion has been developed.

· Update device types, devices, ports and link types and links per subsystem;

· Implementation of a cache which saves everything created by the user. The cache is emptied when the user confirms that data should be sent to the CIC DB.

· View the list of device types, devices, ports per subsystem;

· View the neighborhood connectivity of a device;

· View all the paths which go through a selected device.

· Common features related to graphical tools such as zooming, structure duplication, status bar progress, undo and redo etc.

This tool is very useful to check that the connectivity of subsystem was correctly inserted. Figure 1 to Figure 7 show snapshots of CDBvis:
· Figure 1 shows the first panel when the tool is started. It is composed of 3 parts, a Selection Window which displays a tree with 4 levels (subsystems, device types, devices and ports), a Visual Window which displays the connectivity between devices and an Information Window which gives some information when an element of the tree is selected.

· Figure 2 shows on the left, an example (not complete) of MUON hierarchy which is displayed in the Selection Window. It contains two device types FEE and M5R4. There are 5 devices of type FEE. (FEE_MUON_1 is one device). On the right, there is the Information Window which displays information about FEE_MUON_1. The attributes correspond to the attributes of the DEVICE entity as explained in Chapter 5.
· Figure 3 shows how objects can be created. On the top right, there is a panel to create device types. The user has to fill in the different attributes of the entity DEVICE_TYPE such as the name, the number of input and output ports, a description, etc. On the top left, there is a panel to create devices. Creating multiples devices in one go is possible but updating afterwards the serial number. The user has to provide the name, the device type, the serial number, the responsible, etc. When the user creates a device, it covers both the functional device and the hardware device. It avoids doing two different insertions. On the bottom left, there is a panel which allows creating a port. A device cannot be inserted if the user does not save any ports. Indeed a device without ports does not make sense as it means that it cannot be connected! Here also the parameters to fill in correspond to the attributes of the entities PORT_PROPERTIES and HWPORT_PROPERTIES and IPINFO. By doing such information grouping, we avoid having many panels and steps for the users. Also it is easier to detect errors. For instance, let us assume that the user first had to create 10 hardware ports. Then it has to create the 10 associated functional ports. Assume that one of the functional ports had not been created properly or vice versa; the hardware port associated should be removed too. Performing a rollback will delete the ten rows for both hardware and functional ports provided that there were no commit between the two distinct insertions. So one has to reinsert the 10 hardware ports and the 10 functional ports. It is not very convenient for the user. In our case, the insert has been implementing in such way that either both or none of the ports (hardware, functional) are inserted. Thus one row out of 10 could not be inserted properly, the user will just have to insert the row which fails (CDBVis gives the possibility to get which row to be inserted has failed). On the bottom right, there are two panels, one for creating the link types (for entity LINK_TYPES) and another one to create the link between devices (for entity CONNECTIVITY).
[image: image1.jpg]v TS ———————— el — = %

File Edit View Create Mooy Delete Test Help
s @] Blola] (= V| B V[comnect] [&]& T T
LHCh System Treeview: [

ub:

Selection Window Visual Window

] View anly links of tis linkype:

Device Information

attibute [Value

nformation Windor

< ya— 0
[« [Contauration Datshase Visuateer version 156, 200571078 T [ioo%

Navigation Mode [Neightour View |

Figure 1. First panel of the tool.

[image: image2.jpg]LHCD 3ysten Treeview:

= Subsystems

TEMUON Device Information
& Device ypes
= FEE Atribute Value
active o
FEE_Muon_2
FeeMUON S escription FEE (Front End.
FEE_MUON_3 deviceid 21
FEE_MUONS devicename FEE_MUON_1
MR devicetype FEE
- Link ypes
Vel nudype
location
modity_status -1
nbrofinput 16
nbrofoutput 8

Figure 2. Browsing information via a hierarchy (left). Information about the device (right).

· Figure 4 shows the input and output connectivity of the TFC switch, called ThorV1_00. It is because we are in neighborhood view. With this mode, when the user clicks on a device in the Selection Window, the devices connected on its input and on its output are displayed. On its input it is connected to 16 readout supervisors (named OdinVX_YY). On its output, it is connected to 15 TTCtx (from TTCtx_00 to TTCtx_14). By clicking on one of the link, information about this link is displayed on the Information Window.
· Figure 5 shows the input and output connectivity of the distribution switch in the DAQ system, called DAQ_SWITCH_14. On its input it is connected to the Force Ten, called DAQ_ROUTER_01 (via 10 links). On its output, it is connected to 40 farm nodes and to another distribution switch (DAQ_SWITCH_60) for the storage.
· Figure 6 and Figure 7 show two examples in the Path mode view. With this mode, when the user clicks on a device in the Selection Window, all the paths which go through this device are returned as pop up panel which lists all the paths found. Then the user selects one of the paths and this latter is displayed.

[image: image3.jpg]B Create A DeviceT B Create Device(s)

Create in:) (D ST Create in: Add to subsystem: Serial Number:
MUON v e DB
Device Type Nare: BEER TS Hardware type:
Input ports: Output pors: Prefix: (%d - where to place nr) Responsible:
0 B o 5]
Choose colour: (Click the button to choose) Cpagwinosr: [0 2| datemac Location
ad with 05 El
Start Total
Description(Max 500 chars): 0 2]y] Comments:
romiscuous mode
[]This is a noe (starts or ends a path) Create/Madty ports
o Cancel

L ok Cancel J

0 Create A Link Type

Link Type Name(z0)
R4 Create Pori(s) x HY
Device Nare(s) Port Speett MAC Address: [] Composit linktype?
MERA#S 0 El Created linktypes
Fort Nurber(s) Fhy 1P Address V[Ada_[memove
0-9,11-2010,21; |
[]PXI Booting?: Subnet Address.
Fort Type(s) [] #dm. Status:
B IP Nare:
Bia:
Fort Way
@in O out
Add ports)
Link Details | Connection Details
Eait Remove
From (OUT)
[Dovice Namd_Porttir_| Port Type | Port Way | Port Speed | _Pxiz . A
MSRA |
Device. Fort
wsrart [v][10: A |
o (N
Device Type:
FEE |
Device. Fort
EE_MUON_4
[T 77 Bl
Fill with port data from other device. ok Cancel

[J

Figure 3. Creating objects. On the top left, a panel to create device types and on the top right, a panel to create devices. On the bottom left, a panel to create ports and on the bottom right a panel to create link types and a panel to create links.

[image: image4.jpg]dbvis - Configuration Database
Fie Eii View Creste Modfy Delete Visual Test Help

v % Bl oln(al e[-] M] comex | afafa|[e F[¥[#] (8]

LHCb System Treeview:

=81

i

v 05
o I
o f

T iew only inks of this finktype:

I |

Information
Arbute Value
active 0
description TFC Swich
deviceid 2381
devicename. Therv1 00
devicetype THOR
hwtype.
locafon DUTHOR_n0
rlrofiput 18
Phrofautout 18
node 0
nodeused 1
promiscuous_mo... 1
responsible
rgbcolor 219,167, 150)
serisit XXTHOR_00

user_conmerts

— il
D7 e [io0% [Gesbontiods ieighbourview

1 start| (O] mbox - M., | (7 winda... +|) lana_chap... | & confoBarL... | &4 tntern... +|) windows T...| ¥ Jascpaint .. | @8 ciwinnT... | 7 heb_confi. [[E cdbvis-c.. | O WP @ RSO 11asan

Figure 4. Neighbored connectivity for the TFC switch.

[image: image5.jpg]EEIE

Fie Eii View Creste Modfy Delete Visual Test Help

A T = — Y] A

LHcb System Treevin: =i

oaoswrcHoz 4
DA SWITCH 03

DAo_SITCH 04
DA SITCH s
DA SITCH 08
Do SITCH 07
DA_SITCH 8
DAc_SITCH 08
DAc_SWITCH 10
DAG_SWITCH 11
DAc_SwITCH 12
DAc_SWITCH13
DAG SMITCH 14
DAc_SITCH 1S
oAc_swITCH s
DAc_SWITCH7
DAc_swITCH 18
DAc_swITCH 18

I view oy ks of thisInktype: TSI TR IR TIRITIL AT

e b

Information
Arbute Value
active 0
description smal swich
deviceid 1287115
devicename. DAG_SIITCH 60
devicetype DAaQ_SWITCH
hwtype.
locafon ousz
rlrofiput £l
Phrofautout £l
node 0
nodeused 1
promiscuous_mo... 0
responsible
rgbcolor (243, 247,147)
serisit XXXDAG_SIITCH 60
user_conmerts it4

Ly — o
T T S DAQ [i100% [creationiiode [Neighbour vew
1 start| (O] mbox M., | (7 winda... +|) lana_chap... | & confoBarL... | &4 tntern... +|) windows T...| ¥ Jascpaint .. | @8 ciwinnT... | 7 heb_confi. [[E cdbvis-c.. | O @ RSO 1151 an

Figure 5. Neighbored connectivity for DAQ_SWITCH_14.

[image: image6.jpg]Fle Edt View Creste Modfy Delete Visual

Test Heh

v 3]

EGTE T NCT —] E— = N ENEY S i

LHCb System Treeview:

Subsystems
1080
5 Device types.

DAG_CONTROL PC
DAG_FARM_NODE
DAG_FARM_SWITCH

£5-DAQ_FLOW_SAITCH

DAG_FLOW_00
DAG_FLOW_D1
DAG_FLOW 02
DAG_FLOW 03
DAG_FLOW 04
DAG_FLOW0S
DAG_MS_SWITCH
DAG_NODE
DAG_ROUTER
DAG_STORAGE_NODE
DAG_SUBFARM_CTRLER

T iew only inks of this finktype:

I |

Information
Arbute Value
active 0
description interconnected swich
deviceid 1284838
devicename. DAG_FLOW_00
devicetype DAQ_FLOW_SWITCH
hwtype.
locafon DuBTS25T85
rlrofiput £l
Phrofautout £l
node 0
nodeused 1
promiscuous_mo... 0
responsible
rgbcolor (200, 200, 200)
serisit CecDAG_FLOW_00

user_conmerts

K|

3 [FPaths were successfuly retrisved for the aven devie, I

B L P T N I (L O —

Wston| b |

Dag)

> DAQ_SFC_090 (4)
> DAQ_SFC_033 (4)
> DAQ_SFC_088 (4)
> DAQ_SFC_087 (4)
> DAQ_SFC_086 (4)
> DAQ_SFC_085 (4)
> DAQ_SFC_034 (4)
> DAQ_SFC_083 (4)

> DAQ_SFC_082 (4)
> DAQ_SFC_081 (4)
> DAQ_SFC_080 (4)
> DAQ_SFC_073 (4)
> DAQ_SFC_078 (4)
> DAQ_SFC_077 (4)

DAQ_FLOW 00

s
s
s

— il

baq

[i00% (crabion od

Fathon

F e corfi. [[Ecdbvis-c.. WO DD @ E BSED 113440

Figure 6. Path mode view: get paths through DAQ_FLOW_00.

[image: image7.jpg]=il

Fie Eii View Creste Modfy Delete Visual Test Help

vl B olblal sl W[come | ajaja] wfF ¥z ole]

LHCh System Treevien: =
R Lire
RCHZLIFE
TR
veLo_Lire
Linktypes
e
= Device types
HCAL_CHANEL 7 =/
HeALCTRL PC "DAC_06 > HCAL CELL_0_24 132
e Tt
HCAL DAC_01 A TR
HCAL_DAC_02 DAC T . _16_07 (2)
HCAL_DAC_03 .DACT . _16_08 (2)
HCAL DAC 08 DaCC e o)
i 1611 (2)
HCALDAC 08 1 Ci801z ()
HCAL_DAC_07 ‘,:g,ég 8
s = 1707 ()
T Wiew oy Inksofthis rkype
N, |
Information
Atote Vaue
actve o
deseritondac board forthe hosl
devicea 13285
deviosrane HCAL_DAC06
devicetype HCALDAC
ntype
location HCAL DAC_BD 06
nbrotyut 26
norotatpt 20
node o
nodeuszd '
promiscuous_no... 0
responsiie
rghcckr (155,254,50)
Seray CaLo Dace 3
user_commets
i} | — _l_‘
L T T | FCAL [100% [crestionode rathview

1 start| (O] mbox-Mi.. | (7 winda... +|) lana_chap... | & confoBaPL.. | &4 tntern... ~| [} windows T...| ¥ Jasc Pain .. | G ciiwinT,

e corfi. [[E cdbvis-c.. WO D P @ E BSEO 13340

Figure 7. A Path going through HCAL_DAC_06.

8.1.2 Implementation

CDBVis is a graphical tool written in Python. Python has been chosen because it is commonly used in the LHCb software environment. It is an easy and convenient language to build a prototype. Also as Python is portable, the tool works both on Windows and Linux.

The graphical tool has been developed by a collaborative effort between many people, including myself. It uses two python modules:

· wxPython , a widget library to build graphical panels;
· (lib) cicDBpython (the Python binding of the CIC_DB_lib, see Chapter 7 section 7.3.2) to access and interact with the CIC DB (connection/disconnection, queries).

It has been programmed using objects and methods as shown in Figure 8 [1]. The classes correspond to the tables built for the connectivity and inventory/history schema.

[image: image8.png][cabVis|

[visualiindow]

visWindow mainWindow

-visualObjects: DrawingObject[] mainPanel

mainPanel
DrawingObject -selectWindow
datacbject: Device/Link —zoonitindow
-visualindow
e i
electPanc]]
DBSystem
-subsystems: SubSystem[] selectWindow
[zoonPanc]
SubSystem
inkeypes: LinkTypel] MiniaturWindow
-devicetypes: DeviceType[]
-devices: Device[]
links: Link[
LinkType DeviceType
Device
Link -devicetype: DeviceType
inktype: LinkType -ports: Port[)

—fromDevice: Device
toDevice: Device
—fromPort: Port

toPort: Port Port

Figure 8. The class model above shows the relations between the classes in the different modules (shown as packages), and the member variables that are responsible for the association/reference between the classes are shown.

8.1.3 Issues
CDBVis permits the user to navigate through the connectivity of a subsystem stored in the CIC DB. The main problem we face when implementing CDBVis was to display the connectivity. There are different types of connectivity with different devices. For instance, the Force Ten router with its thousands of ports has to be readjusted compared to the other smaller switches.
Getting all the paths is quite time-consuming. It can go from a few seconds to a few minutes depending on the total number of paths found. For instance, Figure 7 shows paths for the device HCAL_DAC_06. It takes two minutes to find the 13952 paths and getting information about all the different links in the paths and create all the Python objects needed to display them. 1 minute and half is needed to retrieve the paths and half a minute to create the object. Creating all the Python objects can take a lot of time especially for the DAQ. It takes around 1 minute to get the 5384 paths going through the DAQ_SWITCH_14 and around 4 minutes to create the objects. The main problem is to create the object device DAQ_ROUTER_1 and its 1200 ports! Each port is an object. Presenting the paths found to the user especially when there are thousands of them was not obvious. Currently, the user has to select one among many paths (from ten to thousands as mentioned previously). Once a path selected, there is a need to draw the path but it takes one or two seconds as all the objects have been created.
CDBVis works for most features but is still under work. New features should be added such as the possibility to view the microscopic connectivity of a device and also to insert it.

8.2 The DHCP and DNS config files
8.2.1 XML output

The two Perl scripts “dns_generate.pl” and ““dhcpCfg_generate.pl” print the result of the database queries on XML files. The conversion of the XML files into DHCP and DNS config files is ensured by XSLT. The main advantage is that the XML files are independent of the DHCP and DNS specific syntax.
The tags used in the XML files are listed in Table 1.
	XML Tag
	Used in DNS
	Used in DHCP

	<page>
	Yes
	Yes

	<option_list>
	Yes
	Yes

	<SOA>
	Yes
	No

	<expire>
	Yes
	No

	<retry>
	Yes
	No

	<refresh>
	Yes
	No

	<ttl>
	Yes
	No

	<TTL>
	Yes
	No

	<option>
	No
	Yes

	<ethernet_add>
	No
	Yes

	<row>
	Yes
	No

	<ipadd>
	Yes
	Yes

	<ipname>
	Yes
	Yes

	<function>
	Yes
	No

	<filename>
	No
	Yes

	<subnet>
	No
	Yes

	<subnetID>
	No
	Yes

	<subnet_mask>
	No
	Yes

	<rowset>
	Yes
	Yes

Table 1. List of XML tags used in the DHCP and DNS config ifles.
The code below shows an example of the XML output for the DHCP config file:

<?xml version = '1.0'?>

<page>

<option_list><option>ddns-update-style ad-hoc

</option></option_list>
< option_list ><option>deny unknown-clients

</option></option_list>

< option_list ><option>use-host-decl-names on

</option></option_list>

< option_list ><option>always-reply-rfc1048 true

</option></option_list>

<option_list><option>domain-name-servers 137.138.16.5

</option></option_list>

<options><option>option routers 137.138.1.1 </option></options>

<subnet>

<subnetID> 137.30.102.0 </subnetID>

<subnet_mask> 255.255.255.0 </subnet_mask>

<rowset>

<row><ethernet_add>00:00:DD:19:52:15</ethernet_add><ip_add>137.30.102.103</ip_add><ipname>DAQ_NODE_02_03</ipname><filename>farm_nodes_images.nbi</filename></row>

<row><ethernet_add>00:00:DD:19:52:16</ethernet_add><ip_add>137.30.102.104</ip_add><ipname>DAQ_NODE_02_04</ipname><filename>farm_nodes_images.nbi</filename></row>

<row><ethernet_add>00:00:DD:19:52:17</ethernet_add><ip_add>137.30.102.105</ip_add><ipname>DAQ_NODE_02_05</ipname><filename>farm_nodes_images.nbi</filename></row>.
The code below shows an extract of the DNS reverse XML file:

<?xml version = '1.0'?>

<page>

<option_list>

<SOA>137.26.in-addr.arpa. IN SOA DAQ_CTRLPC_10_01.ecs.lhcb. root.localhost.</SOA>

<serial>200609051</serial>

<TTL>86400</TTL>

<refresh>3h</refresh>

<retry>3600</retry>

<expire>4w</expire>

<ttl>3600</ttl>

</option_list>

<rowset>

<row><ipadd>137.26.in-addr.arpa.</ipadd><ipname>DAQ_CTRLPC_10_01.ecs.lhcb.</ipname><function>NS</function></row>

<row><ipadd>05.100.60.137.</ipadd><ipname>DAQ_CTRLPC_60_01.ecs.lhcb.</ipname><function>NS</function></row>.

8.2.2 Conversion using XSLT

Using XML::XSLT Perl library, the XML files are parsed using an XSLT sheet. There is one for the DHCP and two for the DNS (one for the forwarding and one for the reversing).
The tags listed in Table 1 are used as block delimiters and some of them are renamed as mentioned in Table 2.
	XML Tag
	XSLT use

	<page>
	Delimiter

	<option_list>
	Delimiter

	<SOA>
	Delimiter

	<expire>
	;expire

	<retry>
	;retry

	<refresh>
	;refresh

	<ttl>
	;ttl

	<TTL>
	$TTL

	<option>
	Delimiter

	<ethernet_add>
	hardware ethernet

	<row>
	Delimiter

	<ipadd>
	fixed-address

	<ipname>
	host

	<function>
	Delimiter

	<filename>
	filename

	<subnet>
	Delimiter

	<subnetID>
	subnet

	<subnet_mask>
	netmask

	<rowset>
	Delimiter

Table 2. Processing of XML tags in the XSLT stylesheet.
The generated DHCP config file looks like as below:
dns-update-style ad-hoc

; deny unknown-clients

; use-host-decl-names on

; always-reply-rfc1048 true

; domain-name-servers 137.138.16.5

; option routers 137.138.1.1 ; subnet 137.30.102.0 netmask 255.255.255.0 { group {

 host DAQ_NODE_02_03{

 hardware ethernet 00:00:DD:19:52:15;fixed-address 137.30.102.103;

 filename "farm_nodes_images.nbi";}

 host DAQ_NODE_02_04{

 hardware ethernet 00:00:DD:19:52:16;fixed-address 137.30.102.104;

 filename "farm_nodes_images.nbi";}

 host DAQ_NODE_02_05{

 hardware ethernet 00:00:DD:19:52:17;fixed-address 137.30.102.105;

 filename "farm_nodes_images.nbi";}

The forwarding DNS file is like:

$TTL86400

ecs.lhcb. IN SOA DAQ_CTRLPC_10_01.ecs.lhcb. root.localhost. (

200609051;serial

3h;refresh

3600;retry

4w;expire

3600;ttl

)

ecs.lhcb. IN NS DAQ_CTRLPC_10_01.ecs.lhcb.

DAQ_CTRLPC_60_01 IN NS 137.60.100.05

The reversing DNS file is like:

$TTL86400

137.60.in-addr.arpa. IN SOA DAQ_CTRLPC_10_01.ecs.lhcb. root.localhost.(

200609051 ;serial

3h ;refresh

3600 ;retry

4w ;expire

3600 ;ttl

)

137.60.in-addr.arpa. IN NS DAQ_CTRLPC_10_01.ecs.lhcb. 05.100.60.137. IN NS DAQ_CTRLPC_60_01.ecs.lhcb.
8.3 Use of PVSS panels

8.3.1 Handling partitioning

To handle partitioning, the TFC switch must be programmed. It means that we need to determine to which output port a given subsystem is connected and to which input port of the TFC switch a given readout supervisor is connected.

The destination table of the TFC switch allows getting the output port given a subsystem name. Indeed using the destination table, we get all the reachable host nodes, which correspond to TELL1 boards and consequently we know the subsystem.

The destination table of the TFC switch is created and maintained in the CIC DB.

To program the TFC switch, a local TFC control system has been implemented in PVSS.

As the destination table is fixed, a PVSS script gets the output port per subsystem from the CIC DB. The loading is done using PVSSGetPortPerSubsystem, also part of the CIC_DB_lib.

The signature is as follows:

Int PVSSGetPortPerSubsystem (string dfrom,

 string subsystem_name,

 dyn_string &pfrom_list,

 string & ErrMess)
Example of use:
PVSSGetPortPerSubsystem(“THOR_00”, ”VELO_A”, pfrom_list, errMess);
Then to get the connectivity between readout supervisors and the TFC switch, PVSSGetLkToDevID is used. This function allows obtaining all the linkids connected to the input of a given device. This one is used, as the readout supervisors are directly connected to the TFC switch.

Example of use:

Dyn_int linkid_list;

String lkid_row;

Int devid=PVSSGetDeviceID_devicename(“THOR_00”,errMess);

Linkid_list=PVSSGetLkToDevID(2351,errMess);

For (i=1;i<=dynlen(Linkid_list);i++)

lkid_row=PVSSGetMacroConnectivityRow_lkid(Linkid_list[i])

Connectivity information is stored in a datapoint so that it can be accessed during the run of the project.

Figure 18 shows the PVSS user interface to program the TFC switch. The first thing is to select the subsystems part of the partition. Then, after clicking on the FIND ODIN button, the connectivity between the selected subsystems and the TFC switch is displayed in Figure 19.
[image: image9.jpg]Fle Panel 7

=10l

TFC Startup Panel PM 67212006

Create New Configuration

1. Select one or several subsystem(s):

2. Select recipe (activity)
Stored in Cache

Stored in DB

ind ODIN

[————————————————System Configuration———————————————

ODIN

Ports IN

‘2‘3‘4‘5‘5‘7‘5‘9‘1n‘11‘12‘13‘14‘15|

— =free

ThorV1_00 (TFC Switch)
—— =busy

pors out 0] 1]2]3]4] 58] 7[2] o 10]11]12]1a]a]1]

VLA VLC PUS RICH STTT STAT OT.A OT.C RCH2 PRS ECAL HCAL MUA MUC LoDU

nie

_ Configure FREJA | Running Partition

Exit

Figure 18. First step: select the subsystems.

The selected subsystems are no longer free as shown in Figure 19. Besides the connectivity between subsystems and the TFC switch, the first free readout supervisor is suggested and is connected to the TFC switch.
[image: image10.jpg]i =loix(

TFC Startup Panel 03:55 PM 6/21/2006

Create New Configuration | ——————————————————————System Configuration

1. Select one or several subsystem(s): OdinF2 00 =]

I None
I VELO ANOT FREE

Fle Panel 7

Current activity selected

F pery 0123 45678 s pnnE

§ — =fee
D ReH2 ThorV1_00 (TFC Switch)

I ECAL — =busy

" MUON A
I” MUON

pors out 0] 1]2]3]4] 58] 7] 2] o 10]1]12] 3] 4] 15]

2. Select recipe (activity)
Stored in Cache

Stored in DB

WA VLC PUS RICHI STTT STAT OT.A OT.C RCH2 PRS ECAL HCAL MUA MUC LODU nic

_ Configure FREJA | Running Partition Configure System

Figure 19. Result of the connectivity and suggest a free readout supervisor.

If the user is not satisfied with this one, he can select another one and the connectivity is automatically updated as shown in Figure 20.
[image: image11.jpg]Node_Test_specific =101 x]

TFC Startup Panel [427 pm 617205 |

Create New Configuration | ———————————————————————System Configuration

1. Select one or several subsystem(s): [0y o =]

I None
I VELO ANOT FREE

| Fie Panel 7

Current activity selected

3‘4‘5‘5‘7‘5‘9‘1n‘11‘12‘13‘14‘15|

y — =free
D Rer2 horV1_00 (TFC Switch)

I ECAL — =busy

" MUON A
I” MUON
‘ 1

Pos ouT 0 3] 4]5[5]7]8] s 1m]11]12]13]14] 5]

2. Select recipe (a
Stored in Cache

Stored in DB

WA VLC PUS RICHI STTT STAT OT.A OT.C RCH2 PRS ECAL HCAL MUA MUC LODU nic

Find ODIN
o | [EERRRETAGR cortwe Focsa| g Parton coguresyem|_Exn

Figure 20. Select another readout supervisor, update the connectivity.

8.3.2 Recipes

The PVSS library for recipes has been integrated in LHCb specific components such as FwHW [2]. This is a PVSS tool which allows controlling hardware equipment with PVSS.

Once the hardware has been represented with data-points, the tool allows defining recipes and FSM states. It is also used to configure and monitor the hardware. Figure 9 shows the different parameters that can be configured. It consists of essentially registers (see address and sub address field), bus (I2C, JTAG, LBUS, etc.) and FPGA code to download (see Figure 10). Using DIM, the commands Read, Write, Reset enable the user to interact with the hardware.

[image: image12.jpg]% Vision_1: CCPC Client

rC JTAG

Parameters

cere
Bus
Address
Sub address
Size (bytes)
Page size
Type

Data in

Data out

Status.

LBUS

GBE ADVANCED

Commands

peteln?

]

d (TTCr)

Combined (Others)
Shift register (Beetle)

Monitoring

Registers

Reset
Wiite
Read

WiitefRead

Scan

(Select)

Refresh

=

j (seconds)

Figure 9. A PVSS panel to configure buses of a TELL1 board.

[image: image13.jpg]4 Vision_

PC JTAG LBUS GBE { ADVANCED |
Seripts Commands
List mySeript Execute
Edit
FPGA Programming Commands
cePe petell? = Send
Chain [E
File CATELLT 1525 _onc_{
S [EACopeCients
Cloai Lock r: [< System (C) « @& of B

(E20EMDRYS (WINNT

(SProgram s B opo_ecs_inteface_foga.jom

(Dopvss

Sspecs B TELLL_ 1525 orx_BER_ve1n pof

[5pecsserver

(Sotmp

< 1>

Fesolype: [potn <]

Figure 10. Downloading a FPGA code.

This library has been integrated it in the TFC Local Control Project. Figure 11 is a PVSS panel which displays monitoring and configurable parameters. The FSM state of the devices (for example OdinV2_00) is shown in a button next to the name of the device (RUN_NOT_READY). The initial state of OdinV2_00 is RUN_READY. From this state, it can go to RUN_RUNNING. If something goes wrong, it goes automatically to RUN_ERROR. The buttons in grey mean that the device is not part of the data taking (not active). For instance, there is only OdinV2_00 which is active. The other parts ECAL, HCAL, …, VELO are inactive. This kind of run is used to test the readout supervisor OdinV2_00.

Configurable parameters are the ones on the right (which can be ticked, in the L0_trigger frame). They are related to L0 Trigger properties.

[image: image14.jpg]Sub-System State
ECAL RUN_NOT_READY x
HCAL RUN_NOT_READY x
INNER_TRACKER RUN_NOT_READY x
MUON RUN_NOT_READY x
OUTER_TRACKER RUN_NOT_READY x
PS_SPD RUN_NOT_READY x
RICH1 RUN_NOT_READY x
RICH2 RUN_NOT_READY x
TRIGGER_TRACKER RUN_NOT_READY x
VELO RUN_NOT_READY x
0dinv2_00 7

Messages

Statistics and status:

Orbits [3asi7as0ss
BunchiDs [0x000 | 0xCO1_
Total LOTrig. [2799415339
Gated L0 Trig. | 2799415339

L0 Trigger Rate| 0.00

Tig Commands| 2799415339

—[oix]
23052006 112151

PeriodicTrig. Al 0
Periodic Trig. B[0
Calib.Trig.A [0
Calib.Trig.B [0
calib.Tig.c [0
Random Trig. | 2799415339

Auxillary Ti

Timing Tri

IP Destination 3547191289

L0 trigger
I L0 exteral trigger @

I Random L0 tigger ©
I Force random L0~ ©
I Periodic tigger A~ ©
I™ Periodic tigger 8~ ©
™ Calibration trigger A ©
I™ Calibration trigger B ©
™ Calibration trigger C ©
I Auxiliary trigger ©
I™ Force awiliary LD ©
I Timing trigger o
I Max LD triggers ~ ©
I Trigger sequence @

Wb Reser [0 || T petriest ©
Commands:

whore [0 | L0E Reset | O | | event Counter Reset ©

Global Status [INMMMNOR] | LOE+L1E Reset 0 | | 7 L0E FE reset °

CLOHIEFE /st ©

—Configuration Initialization ™ Periodic command @

I™ Dest. assignments ©

Loadrecipe | Saverecipe

Close

Figure 11. Possible configurable parameters.

Figure 12 shows how a recipe can be saved for OdinV2_00. The current values of the parameters will be saved in the CIC DB.

[image: image15.jpg][rrcooi/oanvz_00

Save recipe for [[TFC:ODIN/Odinv2_00

=loix]

Fixed (Recipe type)

Recipe name RAI_|

Comment

Specity

Save Recipe in Cache | Save Recipe in DB |

[
E

5SP0 [Foior Ay X
RICH1 RUN_NOT_READY K
RICH2 RUN_NOT_READY x
TRIGGER_TRACKER RUN_NOT_READY K
VELO RUN_NOT_READY x
Odinv2_00 7

Messages

Statistics and status

=loix]

2310672005 11:25:32

L0 trigger

HBITA088| | PeriodicTrig. Al 0 DR
e ™ Random L0 tigger O
ins 0:000 [0xC01 | Periodic Trig. Bl 0 || FForcerangomlo ©
Tig. [299415339 | Calib. Bl Farodo hgeras @)
[Periodic tigger 8 ©
Exil | [0 ia. [2799415339 | | Calih. ™ Calbration trigger A ©
er Rate 0.00 | Calib. Tri I Calibration trigger 8 ©
I Calibration trigger ¢ ©
Trg Commands [2799475339 | Random Trig. [2799415339 || 1 agsiry tigger
Auxillary Trig. o || T Force auiay Lo ©
: = || T Timngtigger ©
diming;{Hlg; I MaxOtiggers O
1P Destination | 3547191289 || [Trigger sequence ©
I Trigger type brdcst ©
LOEID Reset 0 Hrp

LoThrowe [NMMING] | LOE R [o Commands
rotle esat I Event Counter Reset. ©
Global Status [INMMMMINOR] | LOE+L1E Reset 0 | | 7 L0E FE reset °
- CLOHIEFErset O
Configuration Initialization I Periodic command ©
o

I Dest. assignments

Loadrecipe | Save recipe

Close

Figure 12. Saving a recipe for OdinV2_00.

Figure 13, Figure 14 and Figure 15 show the different steps to load a recipe into a device. The first thing is to select a recipe and a device name as shown in Figure 13. Then it loads the recipe content into the data point elements. All the parameters have been reset (nothing is ticked) as shown in Figure 14. The state of OdinV2_00 is RUN_CONFIGURING which means the device is being configured. Finally the parameters are applied to the panel (dots in green) as shown in Figure 15. In our case, the recipe modifies the value of the parameter “periodic trigger A”.
[image: image16.jpg]{ $: partition_0dinv2_00: TFCManageri i

Load recipe for |TFC:0DIN/Odinv2_00

=loix]

Y|

Select arecipe from:
-Cache

3481749088

. -ConfDB [0x000 [0xCot [Force random L0~ ©
! 700115339 | Calib. Tg.A | 0 || [Perodctisgera O
I Periodic trigger 8 ©
e | Exit | 2799415339 | Calib. Trig. B 0 I Calibration trigger A ©
[500 | calinTrig.c [0 || I Calbratin tigger 5 ©
SESN FICREE [I Calibration trigger ¢ ©
= ot ney | x| | Tr9 Commands | 2799415339 | Random 799559 || [pgsiy tigger ©
| TR = Auxillary Trig. 0 I Force auxiliary L0 ©
\ i I Timingtigger O
TRIGGER_TRACKER RUI_NOT_READY x Timing Trig. 0 I Max LD triggers o
VELO oo RERDY | X 1P Destination | 3547191289 || I~ Trigger sequence ©
\ I Trigger type brdcst ©
0dinv2 00 v LOEID Reset 0 il
| oThore [0 | LoE R [0 R
, ottle osst ™ Event Counter Reset ©
' Global Status [INMMMNOR] | LOE+L1E Reset 0 | | T LOE FE reset o
. CMLEFE®set ©
—Configuration Initialization I Periodic command ©
Messages

[—Statistics and status

o =l 3|
23052006 112617

Peri

cTi

L0 trigger
I L0 external trigger ©

I™ Random L0 tigger ©

Close

Figure 13. Loading an existing recipe for OdinV2_00.

[image: image17.jpg]% part

n_0din¥2_00: TFC:Managerl

System
Partition_0inV2_00

ate

State
L
HCAL RUN_NOT_READY x
INNER_TRACKER RUN_NOT_READY x
MuoN RUN_NOT_READY x
OUTER_TRACKER RUN_NOT_READY x
PS_SPD RUN_NOT_READY x
RICH1 RUN_NOT_READY x
RICH2 RUN_NOT_READY x
TRIGGER_TRACKER RUN_NOT_READY x
VELO RUN_NOT_READY x
0dinv2_00 7
Messages

=)

Statistics and status

Orbits 3481749088
Bunch IDs 0x000 | 0xCO1

Total L0 Trig. 2799415339
Gated L0 Trig. 2799415339

L0 Trigger Rate| 0.00

Tig Commands| 2799415339

ik
2310612006 112727

Periodic Trig. Al 0
Periodic Trig. B[0
Calib.Trig.A [0
Calib.Trig.B [0
calib.Tig.c [0
Random Trig. [2799415339
Awdllay Trig. [0
Timing Tr o
[

L0 trigger
I L0 exteral trigger ©

I Random L0 tigger @
F Forcerandom 0 © | |
I Periodic tigger A~ ©
I Periodic tiigger 8~ ©
I Calibration trigger A ©
I Calibration trigger B ©
I Calibration trigger ¢ @ | |
 Audiliary trigger @ | |
T Force awdliary L0 @ | |
I Tiring trigger o
F Max L0 triggers @
I Trigger sequence @

e ,—“ I Trigger type brdest @
Commands
Thoe [0 | L0E Reset | O1 | | m event Countr Reset ©
Global Status [INMMMINOR] | LOE+L1E Reset 0] | | 7 LoE FE reset °
FsLEFErset O ||
—Configuration Initialization I Periodic command | |

I Dest. assignments @

Save recipe

Load recipe

Close

Figure 14. Configuring the hardware.

[image: image18.jpg]System
Partition_OinV2_00

!
-

tte

Sub-Sy State
ECAL RUN_NOT_READY x
HCAL RUN_NOT_READY x
INNER_TRACKER RUN_NOT_READY K
MuoN RUN_NOT_READY x
OUTER_TRACKER RUN_NOT_READY x
PS_SPD RUN_NOT_READY x
RICH1 RUN_NOT_READY K
RICH2 RUN_NOT_READY x
TRIGGER_TRACKER RUN_NOT_READY x
VELO RUN_NOT_READY x
0dinv2_00 7

Messages

Statistics and status

Orbits 3481749088
Bunch IDs 0x000 | 0xCO1

Total L0 Trig. 2799415339
Gated L0 Trig. 2799415339

L0 Trigger Rate| 0.00

Trg Commands| 2799415339

=loix]

2310672008 11:27:57

PeriodicTrig. Al 0
Periodic Trig. B 0
Calib.Trig.A [0
Calib.Trig.B [0
calib.Tig.c [0
Random Trig. | 2799415339

Auxillary

Timing Tri

IP Destination 3547191289

L0 trigger
I L0 external trigger ©

I™ Random L0 tigger ©
I Force random LD~ ©
I Periodic tigger A~ @
I™ Periodic tiigger 8~ ©
I™ Calibration trigger A ©
I™ Calibration trigger B ©
I Calibration trigger C ©
I Auxiliary trigger ~ ©
I™ Force awxliary LD ©
™ Timing trigger o
I Max LD triggers @
I Trigger sequence @

Wb Reser [0 || T eetriest ©
Commands:

Thoe [0 | L0E Reset | O | | = event Countr Reset ©

Global Status [INMMMMMNOR] | LOE+L1E Reset 0 | | LOE FE reset °

CLOAIEFErset O

—Configuration Initialization ™ Periodic command @

I Dest. assignments O

Loadrecipe | Save recipe

Close

Figure 15. Hardware configured.

So using this panel one can configure the readout supervisor (the real hardware) by loading recipes from the PVSS cache or the CIC DB. If the user is an expert in the readout supervisor, he can also save recipes for it. This panel also allows users to monitor the readout supervisor via different parameters such as Bunch IDs, Trg commands, etc.

Finally the state of the readout supervisor is given by the FSM.
8.3.3 Combining connectivity and configuration parameters

The two previous subsections o shows how connectivity and device parameters for configuration need each other. To define the partition there is a need to get information about the connectivity (referring to Figure 18 and Figure 19), and to set the registers in the partition the information about configuration parameters (referring to Figure 13, Figure 14).
Mixing different types of information is performed at the level of PVSS panels and scripts. It permits the construction of an autonomic control system as PVSS is aware of the changes and can update the different elements as shown in Chapter 7 section 7.1.1.5 and 7.1.2.3. In that case PVSS programs the TFC switch using the connectivity and then configure the readout supervisor according to the running mode.
8.3.4 Displaying the routing table in PVSS
After describing the generation of the routing tables the next section will detail how the generated information is loaded into the switch.

All the hardware must be configured via PVSS. Switches will also be configured using PVSS.

PVSSLoadRoutingTable is a function of CIC_DB_lib to be used to load the routing table of a given switch.

The signature of the function in PVSS is as follows:

Int PVSSLoadRoutingTable (string switch_name,

 dyn_string
 & destination_name_list,

 dyn_string & nextport_list,

 dyn_string & ipnext_list,

 dyn_string & subnetnext_list,

 dyn_string & macaddnext_list,

 string ErrMess);

This function can be called in a PVSS script.

Figure 7 and Figure 8 show PVSS panels to load the routing table of a given switch from the CIC DB to PVSS. Figure 7 displays all the switches. The user selects one switch and pushes the “Load Routing Table” button. Then Figure 8 displays the routing table of the selected switch.

[image: image19.jpg]Select one switch

Figure 7. First step: select a switch.

[image: image20.jpg]=10l

Fle Panel 7

Select one switch

DAQ_SWITCH_DB <]

Load routing table

Load RT into the switch Exit

[Loading Routing Table for DAQ_SWITCH_06

Port Nb

next hop IP

next hop MAC

next hop subnet ma

Destination Name

destination IP

137.29.106.101

00:00:12:18:56:13

255.265.265.0

DAQ_NODE_06 01

137.29.106.101

137.29.106.105

00:00:12:18:56:17

255.255.265.0

DAQ_NODE_05_05

137.29.106.105

137.29.106.106

00:00:12:18:56:18

255.255.265.0

DAQ_NODE_05_06

137.29.106.106

137.29.106.102

00:00:12:18:56:14

55.255.265.0

DAQ_NODE_05_02

137.29.106.102

137.29.106.103

00:00:12:18:56:15

55.255.265.0

DAQ_NODE_05_03

137.29.106.103

137.29.106.104

00:00:12:18:56:15

255.255.265.0

DAQ_NODE_005_04

137.29.106.104

137.29.106.100

00:00:12:18:56:12

255.255.265.0

DAQ_NODE_05_00

137.29.106.100

137.29.106.115

00:00:12:18:56:27

55.255.265.0

DAQ_NODE_05_15

137.29.106.115

137.29.106.107

00:00:12:18:56:19

55.255.265.0

DAQ_NODE_015_07

137.29.106.107

137.29.106.108

00:00:12:18:56:20

255.255.265.0

DAQ_NODE_05_08

137.29.106.108

137.29.106.109

00:00:12:18:56:21

255.255.265.0

DAQ_NODE_015_09

137.29.106.109

10

137.29.106.110

00:00:12:18:56:22

55.255.265.0

DAQ_NODE_05_10

137.29.106.110

11

137.28.106.111

00:00:12:18:56:23

55.255.265.0

DAQ_NODE_06_11

137.28.106.111

12

137.29.106.112

00:00:12:18:56:24

255.255.265.0

DAQ_NODE_05_12

137.29.106.112

13

137.29.106.113

00:00:12:18:56:25

255.255.265.0

DAQ_NODE_05_13

137.29.106.113

14

137.29.106.114

00:00:12:18:56:26

55.255.265.0

DAQ_NODE_05_14

137.29.106.114

Eil

137.29.106.120

00:00:12:18:56:32

55.255.265.0

DAQ_NODE_05_20

137.29.106.120

21

137.29.106.121

00:00:12:18:56:33

255.255.265.0

DAQ_NODE_06 21

137.29.106.121

%

137.29.106.126

00:00:12:18:56:38

255.255.265.0

DAQ_NODE_05_26

137.29.106.126

2

137.29.106.122

00:00:12:18:56:34

255.255.265.0

DAQ_NODE_05_22

137.29.106.122
|

Figure 8. Loading the routing table.
8.4 Conclusion
In this chapter the GUI layer has been described. Different tools have been implemented. CDBVis is a Python graphical tool which displays the connectivity of devices. It also permits to insert the connectivity.

PVSS panels have been built to configure modules based on the PVSS library for recipes and on the PVSS CIC_DB_lib. It includes displaying the routing tables and handling partitions.

One of the common issues of the GUI layer is to display the information in a user-friendly way. Viewing the connectivity information with all the links was not easy to manage. Improvements can still be done.

With this layer, the database and the object layer could have been tested. Indeed bugs in the PVSS library for recipes and in the CIC_DB_lib could have been discovered and fixed.
Moreover with this type of architecture, one can build a single click control system. The control system based on PVSS can access to any types of information stored in the CIC DB. So PVSS panels can be implemented to modify and load recipes to the devices part of the partition using the connectivity information. The next chapter focuses on the validation of the routing and destination algorithms in PL/SQL.
References
[1] T.Johansen, L.Abadie, E. van Herwijnen, R. Shade, LHCb Configuration Database Visualizer, LHCb Technical Note v1r2, September 2006. LHCB COMP 2006-028.
[2] FwHW tool website,

http://lhcb-online.web.cern.ch/lhcb-online/ecs/PVSS_TELL1/default.html.
� Dyn_string is a type specific to PVSS and it is similar to the vector<string> type, part of STL.

