Chapter 8 Structure of the GUI layer
This chapter describes the different GUIs which have been built on top of the object layer. First we explain the features and the implementation principles of CDBVis, a graphical editor to navigate through the CIC DB. Secondly, we explain how the XML config files generated by the two Perl scripts are converted using XSLT to config files which are accepted by the DHCP and DNS servers. Finally we present some PVSS panels which have been implemented to configure modules and handle partitioning. We also show that both information about configuration parameters and connectivity are combined by the ECS so that a single-click system can be built.
8.1 CDBVis, a graphical editor
8.1.1 Features

CDBVis [1] enables a non-DB expert user to view and insert connectivity information.

Its features are the following ones:

· Creation of device types, devices, ports and link types and links per subsystem, mass insertion has been developed.

· Update device types, devices, ports and link types and links per subsystem;

· Implementation of a cache which saves everything created by the user. The cache is emptied when the user confirms that data should be sent to the CIC DB.

· View the list of device types, devices, ports per subsystem;

· View the neighborhood connectivity of a device;

· View all the paths which go through a selected device.

· Common features related to graphical tools such as zooming, structure duplication, status bar progress, undo and redo etc.

This tool is very useful to check that the connectivity of subsystem was correctly inserted. Figure 1 to Figure 7 show snapshots of CDBvis:
· Figure 1 shows the first panel when the tool is started. It is composed of 3 parts, a Selection Window which displays a tree with 4 levels (subsystems, device types, devices and ports), a Visual Window which displays the connectivity between devices and an Information Window which gives some information when an element of the tree is selected.

· Figure 2 shows on the left, an example (not complete) of MUON hierarchy which is displayed in the Selection Window. It contains two device types FEE and M5R4. There are 5 devices of type FEE. (FEE_MUON_1 is one device). On the right, there is the Information Window which displays information about FEE_MUON_1. The attributes correspond to the attributes of the DEVICE entity as explained in Chapter 5.
· Figure 3 shows how objects can be created. On the top right, there is a panel to create device types. The user has to fill in the different attributes of the entity DEVICE_TYPE such as the name, the number of input and output ports, a description, etc. On the top left, there is a panel to create devices. Creating multiples devices in one go is possible but updating afterwards the serial number. The user has to provide the name, the device type, the serial number, the responsible, etc. When the user creates a device, it covers both the functional device and the hardware device. It avoids doing two different insertions. On the bottom left, there is a panel which allows creating a port. A device cannot be inserted if the user does not save any ports. Indeed a device without ports does not make sense as it means that it cannot be connected! Here also the parameters to fill in correspond to the attributes of the entities PORT_PROPERTIES and HWPORT_PROPERTIES and IPINFO. By doing such information grouping, we avoid having many panels and steps for the users. Also it is easier to detect errors. For instance, let us assume that the user first had to create 10 hardware ports. Then it has to create the 10 associated functional ports. Assume that one of the functional ports had not been created properly or vice versa; the hardware port associated should be removed too. Performing a rollback will delete the ten rows for both hardware and functional ports provided that there were no commit between the two distinct insertions. So one has to reinsert the 10 hardware ports and the 10 functional ports. It is not very convenient for the user. In our case, the insert has been implementing in such way that either both or none of the ports (hardware, functional) are inserted. Thus one row out of 10 could not be inserted properly, the user will just have to insert the row which fails (CDBVis gives the possibility to get which row to be inserted has failed). On the bottom right, there are two panels, one for creating the link types (for entity LINK_TYPES) and another one to create the link between devices (for entity CONNECTIVITY).
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Figure 1. First panel of the tool.
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Figure 2. Browsing information via a hierarchy (left). Information about the device (right).

· Figure 4 shows the input and output connectivity of the TFC switch, called ThorV1_00. It is because we are in neighborhood view. With this mode, when the user clicks on a device in the Selection Window, the devices connected on its input and on its output are displayed. On its input it is connected to 16 readout supervisors (named OdinVX_YY). On its output, it is connected to 15 TTCtx (from TTCtx_00 to TTCtx_14). By clicking on one of the link, information about this link is displayed on the Information Window.
· Figure 5 shows the input and output connectivity of the distribution switch in the DAQ system, called DAQ_SWITCH_14. On its input it is connected to the Force Ten, called DAQ_ROUTER_01 (via 10 links). On its output, it is connected to 40 farm nodes and to another distribution switch (DAQ_SWITCH_60) for the storage.
· Figure 6 and Figure 7 show two examples in the Path mode view. With this mode, when the user clicks on a device in the Selection Window, all the paths which go through this device are returned as pop up panel which lists all the paths found. Then the user selects one of the paths and this latter is displayed.
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Figure 3. Creating objects. On the top left, a panel to create device types and on the top right, a panel to create devices. On the bottom left, a panel to create ports and on the bottom right a panel to create link types and a panel to create links.
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Figure 4. Neighbored connectivity for the TFC switch.
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Figure 5. Neighbored connectivity for DAQ_SWITCH_14.
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Figure 6. Path mode view: get paths through DAQ_FLOW_00.
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Figure 7. A Path going through HCAL_DAC_06.

8.1.2 Implementation

CDBVis is a graphical tool written in Python. Python has been chosen because it is commonly used in the LHCb software environment. It is an easy and convenient language to build a prototype. Also as Python is portable, the tool works both on Windows and Linux.

The graphical tool has been developed by a collaborative effort between many people, including myself. It uses two python modules:

· wxPython , a widget library to build graphical panels;
· (lib) cicDBpython (the Python binding of the CIC_DB_lib, see Chapter 7 section 7.3.2 ) to access and interact with the CIC DB (connection/disconnection, queries).

It has been programmed using objects and methods as shown in Figure 8 [1]. The classes correspond to the tables built for the connectivity and inventory/history schema. 
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Figure 8. The class model above shows the relations between the classes in the different modules (shown as packages), and the member variables that are responsible for the association/reference between the classes are shown.

8.1.3 Issues
CDBVis permits the user to navigate through the connectivity of a subsystem stored in the CIC DB. The main problem we face when implementing CDBVis was to display the connectivity. There are different types of connectivity with different devices. For instance, the Force Ten router with its thousands of ports has to be readjusted compared to the other smaller switches. 
Getting all the paths is quite time-consuming. It can go from a few seconds to a few minutes depending on the total number of paths found. For instance, Figure 7 shows paths for the device HCAL_DAC_06. It takes two minutes to find the 13952 paths and getting information about all the different links in the paths and create all the Python objects needed to display them. 1 minute and half is needed to retrieve the paths and half a minute to create the object. Creating all the Python objects can take a lot of time especially for the DAQ. It takes around 1 minute to get the 5384 paths going through the DAQ_SWITCH_14 and around 4 minutes to create the objects. The main problem is to create the object device DAQ_ROUTER_1 and its 1200 ports! Each port is an object. Presenting the paths found to the user especially when there are thousands of them was not obvious. Currently, the user has to select one among many paths (from ten to thousands as mentioned previously). Once a path selected, there is a need to draw the path but it takes one or two seconds as all the objects have been created.
CDBVis works for most features but is still under work. New features should be added such as the possibility to view the microscopic connectivity of a device and also to insert it.

8.2 The DHCP and DNS config files
8.2.1 XML output

The two Perl scripts “dns_generate.pl” and ““dhcpCfg_generate.pl” print the result of the database queries on XML files. The conversion of the XML files into DHCP and DNS config files is ensured by XSLT. The main advantage is that the XML files are independent of the DHCP and DNS specific syntax. 
The tags used in the XML files are listed in Table 1. 
	XML Tag
	Used in DNS 
	Used in DHCP

	<page>
	Yes 
	Yes 

	<option_list>
	Yes
	Yes 

	<SOA>
	Yes 
	No 

	<expire>
	Yes
	No  

	<retry>
	Yes
	No 

	<refresh>
	Yes 
	No 

	<ttl>
	Yes
	No

	<TTL>
	Yes 
	No  

	<option>
	No 
	Yes 

	<ethernet_add>
	No 
	Yes 

	<row>
	Yes
	No  

	<ipadd>
	Yes
	Yes 

	<ipname>
	Yes
	Yes 

	<function>
	Yes
	No

	<filename>
	No
	Yes

	<subnet>
	No
	Yes

	<subnetID>
	No
	Yes

	<subnet_mask>
	No
	Yes

	<rowset>
	Yes 
	Yes 


Table 1. List of XML tags used in the DHCP and DNS config ifles.
The code below shows an example of the XML output for the DHCP config file:

<?xml version = '1.0'?> 

<page> 

<option_list><option>ddns-update-style ad-hoc

</option></option_list>
< option_list ><option>deny unknown-clients 

</option></option_list>

< option_list ><option>use-host-decl-names on

</option></option_list>

< option_list ><option>always-reply-rfc1048 true 

</option></option_list>

<option_list><option>domain-name-servers 137.138.16.5

</option></option_list>

<options><option>option routers 137.138.1.1 </option></options>

<subnet> 

<subnetID> 137.30.102.0 </subnetID> 

<subnet_mask> 255.255.255.0 </subnet_mask> 

<rowset> 

<row><ethernet_add>00:00:DD:19:52:15</ethernet_add><ip_add>137.30.102.103</ip_add><ipname>DAQ_NODE_02_03</ipname><filename>farm_nodes_images.nbi</filename></row> 

<row><ethernet_add>00:00:DD:19:52:16</ethernet_add><ip_add>137.30.102.104</ip_add><ipname>DAQ_NODE_02_04</ipname><filename>farm_nodes_images.nbi</filename></row> 

<row><ethernet_add>00:00:DD:19:52:17</ethernet_add><ip_add>137.30.102.105</ip_add><ipname>DAQ_NODE_02_05</ipname><filename>farm_nodes_images.nbi</filename></row>.
The code below shows an extract of the DNS reverse XML file:

<?xml version = '1.0'?> 

<page> 

<option_list>

<SOA>137.26.in-addr.arpa. IN SOA DAQ_CTRLPC_10_01.ecs.lhcb.  root.localhost.</SOA>

<serial>200609051</serial>

<TTL>86400</TTL>

<refresh>3h</refresh>

<retry>3600</retry>

<expire>4w</expire>

<ttl>3600</ttl>

</option_list>

<rowset> 

<row><ipadd>137.26.in-addr.arpa.</ipadd><ipname>DAQ_CTRLPC_10_01.ecs.lhcb.</ipname><function>NS</function></row>

<row><ipadd>05.100.60.137.</ipadd><ipname>DAQ_CTRLPC_60_01.ecs.lhcb.</ipname><function>NS</function></row>.

8.2.2 Conversion using XSLT 

Using XML::XSLT Perl library, the XML files are parsed using an XSLT sheet. There is one for the DHCP and two for the DNS (one for the forwarding and one for the reversing). 
The tags listed in Table 1 are used as block delimiters and some of them are renamed as mentioned in Table 2.
	XML Tag
	XSLT use

	<page>
	Delimiter

	<option_list>
	Delimiter

	<SOA>
	Delimiter

	<expire>
	;expire

	<retry>
	;retry

	<refresh>
	;refresh

	<ttl>
	;ttl

	<TTL>
	$TTL

	<option>
	Delimiter 

	<ethernet_add>
	hardware ethernet 

	<row>
	Delimiter

	<ipadd>
	fixed-address

	<ipname>
	host

	<function>
	Delimiter

	<filename>
	filename

	<subnet>
	Delimiter

	<subnetID>
	subnet

	<subnet_mask>
	netmask

	<rowset>
	Delimiter 


Table 2. Processing of XML tags in the XSLT stylesheet.
The generated DHCP config file looks like as below:
dns-update-style ad-hoc

; deny unknown-clients 

; use-host-decl-names on

; always-reply-rfc1048 true 

; domain-name-servers 137.138.16.5

; option routers 137.138.1.1 ; subnet  137.30.102.0  netmask  255.255.255.0  {  group {

   host DAQ_NODE_02_03{ 

   hardware ethernet 00:00:DD:19:52:15;fixed-address 137.30.102.103;

   filename "farm_nodes_images.nbi";}

   host DAQ_NODE_02_04{ 

   hardware ethernet 00:00:DD:19:52:16;fixed-address 137.30.102.104;

   filename "farm_nodes_images.nbi";}

   host DAQ_NODE_02_05{ 

   hardware ethernet 00:00:DD:19:52:17;fixed-address 137.30.102.105;

   filename "farm_nodes_images.nbi";}

The forwarding DNS file is like:

$TTL86400

ecs.lhcb. IN SOA DAQ_CTRLPC_10_01.ecs.lhcb. root.localhost. (

200609051;serial

3h;refresh

3600;retry

4w;expire

3600;ttl

)




ecs.lhcb. IN  NS  DAQ_CTRLPC_10_01.ecs.lhcb.




DAQ_CTRLPC_60_01  IN  NS  137.60.100.05

The reversing DNS file is like:

$TTL86400

137.60.in-addr.arpa. IN SOA DAQ_CTRLPC_10_01.ecs.lhcb.  root.localhost.(

200609051  ;serial

3h  ;refresh

3600 ;retry

4w  ;expire

3600  ;ttl

)




137.60.in-addr.arpa. IN  NS  DAQ_CTRLPC_10_01.ecs.lhcb.  05.100.60.137. IN  NS  DAQ_CTRLPC_60_01.ecs.lhcb.  
8.3 Use of PVSS panels 

8.3.1 Handling partitioning

To handle partitioning, the TFC switch must be programmed. It means that we need to determine to which output port a given subsystem is connected and to which input port of the TFC switch a given readout supervisor is connected.

The destination table of the TFC switch allows getting the output port given a subsystem name. Indeed using the destination table, we get all the reachable host nodes, which correspond to TELL1 boards and consequently we know the subsystem. 

The destination table of the TFC switch is created and maintained in the CIC DB.

To program the TFC switch, a local TFC control system has been implemented in PVSS.

As the destination table is fixed, a PVSS script gets the output port per subsystem from the CIC DB. The loading is done using PVSSGetPortPerSubsystem, also part of the CIC_DB_lib. 

The signature is as follows:

Int PVSSGetPortPerSubsystem (string dfrom,





        string subsystem_name,

        dyn_string &pfrom_list,

        string & ErrMess)
Example of use:
PVSSGetPortPerSubsystem(“THOR_00”, ”VELO_A”, pfrom_list, errMess);
Then to get the connectivity between readout supervisors and the TFC switch, PVSSGetLkToDevID is used. This function allows obtaining all the linkids connected to the input of a given device. This one is used, as the readout supervisors are directly connected to the TFC switch.

Example of use:

Dyn_int linkid_list;

String lkid_row;

Int devid=PVSSGetDeviceID_devicename(“THOR_00”,errMess);

Linkid_list=PVSSGetLkToDevID(2351,errMess);

For (i=1;i<=dynlen(Linkid_list);i++)

lkid_row=PVSSGetMacroConnectivityRow_lkid(Linkid_list[i])

Connectivity information is stored in a datapoint so that it can be accessed during the run of the project.

Figure 18 shows the PVSS user interface to program the TFC switch. The first thing is to select the subsystems part of the partition. Then, after clicking on the FIND ODIN button, the connectivity between the selected subsystems and the TFC switch is displayed in Figure 19. 
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Figure 18. First step: select the subsystems.

The selected subsystems are no longer free as shown in Figure 19. Besides the connectivity between subsystems and the TFC switch, the first free readout supervisor is suggested and is connected to the TFC switch.
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Figure 19. Result of the connectivity and suggest a free readout supervisor.

If the user is not satisfied with this one, he can select another one and the connectivity is automatically updated as shown in Figure 20.
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Figure 20. Select another readout supervisor, update the connectivity.

8.3.2 Recipes

The PVSS library for recipes has been integrated in LHCb specific components such as FwHW [2]. This is a PVSS tool which allows controlling hardware equipment with PVSS.

Once the hardware has been represented with data-points, the tool allows defining recipes and FSM states. It is also used to configure and monitor the hardware. Figure 9 shows the different parameters that can be configured. It consists of essentially registers (see address and sub address field), bus (I2C, JTAG, LBUS, etc.) and FPGA code to download (see Figure 10). Using DIM, the commands Read, Write, Reset enable the user to interact with the hardware.
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Figure 9. A PVSS panel to configure buses of a TELL1 board.
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Figure 10. Downloading a FPGA code.

This library has been integrated it in the TFC Local Control Project. Figure 11 is a PVSS panel which displays monitoring and configurable parameters. The FSM state of the devices (for example OdinV2_00) is shown in a button next to the name of the device (RUN_NOT_READY). The initial state of OdinV2_00 is RUN_READY. From this state, it can go to RUN_RUNNING. If something goes wrong, it goes automatically to RUN_ERROR. The buttons in grey mean that the device is not part of the data taking (not active). For instance, there is only OdinV2_00 which is active. The other parts ECAL, HCAL, …, VELO are inactive. This kind of run is used to test the readout supervisor OdinV2_00.

Configurable parameters are the ones on the right (which can be ticked, in the L0_trigger frame). They are related to L0 Trigger properties. 
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Figure 11. Possible configurable parameters.

Figure 12 shows how a recipe can be saved for OdinV2_00. The current values of the parameters will be saved in the CIC DB.
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Figure 12. Saving a recipe for OdinV2_00.

Figure 13, Figure 14 and Figure 15 show the different steps to load a recipe into a device. The first thing is to select a recipe and a device name as shown in Figure 13. Then it loads the recipe content into the data point elements. All the parameters have been reset (nothing is ticked) as shown in Figure 14. The state of OdinV2_00 is RUN_CONFIGURING which means the device is being configured. Finally the parameters are applied to the panel (dots in green) as shown in Figure 15. In our case, the recipe modifies the value of the parameter “periodic trigger A”. 
[image: image16.jpg]{ $: partition_0dinv2_00: TFCManageri i

Load recipe for |TFC:0DIN/Odinv2_00

=loix]

Y|

Select arecipe from:
-Cache

3481749088

. -ConfDB [ 0x000 [0xCot [ Force random L0~ ©
! 700115339 | Calib. Tg.A | 0 || [ Perodctisgera O
I Periodic trigger 8 ©
e | Exit | 2799415339 | Calib. Trig. B 0 I Calibration trigger A ©
[ 500 | calinTrig.c [0 || I Calbratin tigger 5 ©
SESN FICREE [ I Calibration trigger ¢ ©
= ot ney | x| | Tr9 Commands | 2799415339 | Random 799559 || [ pgsiy tigger  ©
| TR = Auxillary Trig. 0 I Force auxiliary L0 ©
\ i I Timingtigger O
TRIGGER_TRACKER RUI_NOT_READY x Timing Trig. 0 I Max LD triggers o
VELO oo RERDY | X 1P Destination | 3547191289 || I~ Trigger sequence  ©
\ I Trigger type brdcst ©
0dinv2 00 v LOEID Reset 0 il
| oThore [0 | LoE R [ 0 R
, ottle osst ™ Event Counter Reset ©
' Global Status [INMMMNOR] | LOE+L1E Reset 0 | | T LOE FE reset o
. CMLEFE®set  ©
—Configuration Initialization I Periodic command  ©
Messages

[—Statistics and status

o =l 3|
23052006 112617

Peri

cTi

L0 trigger
I L0 external trigger  ©

I™ Random L0 tigger  ©

Close





Figure 13. Loading an existing recipe for OdinV2_00.
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Figure 14. Configuring the hardware.
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Figure 15. Hardware configured.

So using this panel one can configure the readout supervisor (the real hardware) by loading recipes from the PVSS cache or the CIC DB. If the user is an expert in the readout supervisor, he can also save recipes for it. This panel also allows users to monitor the readout supervisor via different parameters such as Bunch IDs, Trg commands, etc.

Finally the state of the readout supervisor is given by the FSM.
8.3.3 Combining connectivity and configuration parameters

The two previous subsections o shows how connectivity and device parameters for configuration need each other. To define the partition there is a need to get information about the connectivity (referring to Figure 18 and Figure 19), and to set the registers in the partition the information about configuration parameters (referring to Figure 13, Figure 14). 
Mixing different types of information is performed at the level of PVSS panels and scripts. It permits the construction of an autonomic control system as PVSS is aware of the changes and can update the different elements as shown in Chapter 7 section 7.1.1.5 and 7.1.2.3. In that case PVSS programs the TFC switch using the connectivity and then configure the readout supervisor according to the running mode.
8.3.4 Displaying the routing table in PVSS
After describing the generation of the routing tables the next section will detail how the generated information is loaded into the switch.

All the hardware must be configured via PVSS. Switches will also be configured using PVSS.

PVSSLoadRoutingTable is a function of CIC_DB_lib to be used to load the routing table of a given switch.

The signature of the function in PVSS is as follows:

Int PVSSLoadRoutingTable (string switch_name,



          dyn_string
 & destination_name_list,




          dyn_string & nextport_list,

          dyn_string & ipnext_list,

          dyn_string & subnetnext_list,

          dyn_string & macaddnext_list,

          
     string     ErrMess);

This function can be called in a PVSS script.

Figure 7 and Figure 8 show PVSS panels to load the routing table of a given switch from the CIC DB to PVSS. Figure 7 displays all the switches. The user selects one switch and pushes the “Load Routing Table” button. Then Figure 8 displays the routing table of the selected switch.
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Figure 7. First step: select a switch.
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Figure 8. Loading the routing table.
8.4 Conclusion
In this chapter the GUI layer has been described. Different tools have been implemented. CDBVis is a Python graphical tool which displays the connectivity of devices. It also permits to insert the connectivity.

PVSS panels have been built to configure modules based on the PVSS library for recipes and on the PVSS CIC_DB_lib. It includes displaying the routing tables and handling partitions.

One of the common issues of the GUI layer is to display the information in a user-friendly way. Viewing the connectivity information with all the links was not easy to manage. Improvements can still be done.

With this layer, the database and the object layer could have been tested. Indeed bugs in the PVSS library for recipes and in the CIC_DB_lib could have been discovered and fixed. 
Moreover with this type of architecture, one can build a single click control system. The control system based on PVSS can access to any types of information stored in the CIC DB. So PVSS panels can be implemented to modify and load recipes to the devices part of the partition using the connectivity information. The next chapter focuses on the validation of the routing and destination algorithms in PL/SQL.
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