Chapter 9 Validation of the routing and destination algorithms

Chapter 9 Validation of the routing and destination algorithms

The chapter describes the different tests which have been carried out to validate the algorithms related to paths (database layer). It covers tests on the algorithms to generate routing and destination tables. It also includes tests on loading a routing table from the CIC DB to a switch and on verifying the compatibility of the DHCP config file created by the Perl script.
9.1 Outline of the routingtable_pck package (reminder)

As explained in the previous chapter, the routing tables of the DAQ switches, the destination of the DHCP servers and the TFC switch will be generated using a PL/SQL package, routingtable_pck. This package is only used for the TFC and DAQ connectivity.

Performance for generating these tables is not an issue. Destination and routing tables will be generated and stored in the CIC DB in advance. The information can be loaded whenever it is required. However loading should be very fast.

It is important to note that these predefined tables are stored and maintained by functions in the routingtable_pck package. They are executed whenever a change related to the TFC or DAQ systems occur, such as:

· Adding new links to the CONNECTIVITY table.

· Deleting links from the CONNECTIVITY table.

· Disabling a functional device from the FUNCTIONAL DEVICE table.

· Disabling a link from the CONNECTIVITY table.

· Updating any of these following attributes: bidirectional_link_used, link_type, system_name
All the following tests have been performed with a shared database maintained by CERN central database service. This database is accessed by hundreds of users, executing different queries.

Each query or PL/SQL function has been performed 5 times and I took the average, noted Avg_1 of the 5 execution times (time interval between queries : 1s -5s – 5mn- 1h) and the average, noted Avg_2 of the three queries, taking out the best and the worst ones. I also displayed the worst and best cases. This way of testing was advised by IT-DB. I used the timing feature of Oracle SQL*plus. It is important to note that this database is accessed by hundreds of users. So some results can change depending on the load on the database when executing the test.
Tests have been performed on my desktop PC (Windows XP Professional version 2002), of almost 3 years old (768MB, Pentium 4 and 2.4 GHz).
It is also important to mention that the performance of creating routing and destination tables is not an issue. They are created once the connectivity of the DAQ and the ECS is inserted and maintained if any changes occur. However, loading the routing tables and destination tables (from the CIC DB to PVSS) must be performed within a few seconds.
9.2 Robustness of the routing and destination algorithms to different topologies

One of the tests was to test the robustness of the routing algorithm to different network topologies.

9.2.1 Destination algorithm applied to the TFC system

A simplified view of the TFC system is shown in Figure 1. It can be considered as a tree between the TFC switch (THOR_00) and the TELL1 boards (represented by SubDet_L1FE). TTCtx, TTCoc and TTCrx are fan-outs, i.e. they split the signal so that it can reach by more devices. SubDet_L0FE covers a lot of L0 electronics whose connectivity is represented in Figure 2.

[image: image1.jpg]. Throtelin TFC SYSTEM

———— Clocksignal

——» Datalink
—— Clock + data traffic

Subbet_LOFE

Subbet_L1FE

DAQ (core switch;

Subbet can be (VELO, RICH, LOMUON,..)

MuninL0_00

MuninL1_00

Figure 1. Simplified overview of the TFC system.

[image: image2.jpg]LOFE_FST LOFE_FST

ll LOFE_SCD
LOFE_THD

LOFE_FST LOFE_FST LOFE_FST
LOFE_SCD ll LOFE_SCD

LOFE_THD| [LOFE_THD

LOFE_SCD

LOFE_THD

LOFE_SCD

LOFE_THD
LOFE_FTH

Figure 2. Connectivity for the L0 electronics.

Table 1 describes the number of devices per type. The L0 electronics connectivity has been simulated as it depends on each subsystem. During my PhD studies, I could not get the final connectivity schema of all the subsystems. However the number of L0 electronics and the number of layers of L0FE will be roughly the same as in the final set up.There is one link between an ODIN and the TFC switch.There is one link between a TTCtx and the TFC switch.

A TTCtx drives 10 TTCocs, and a TTCoc 8 TTCrxs. Each TTCrx is connected to 6 L0FE_FSTs. A L0FE_FST is connected to 5 L0FE_SCDs. A L0FE_THD serves 10 L0FE_SCDs. A L0FE_FTH is connected on its input to 5 L0FE_FTH. The L0FE_FTH are connected to the TELL1 boards. The connectivity between L0FE_FTHs and TELL1 boards depends on the subsystem, as the number of TELL1 boards is different. All the links are unidirectional. The host nodes are the TELL1 boards and the readout supervisors, in italic in Table 1. MuninL1_00 and MuninL0_00 correspond to the Throttle switches which have been explained in Chapter 1. Munin0 is a throttle OR switch (32 inputs *1 output). These three devices are used to alert the readout supervisors in case of buffer overflows.

	Device Type Name
	Number

	ODIN (readout supervisor)
	16

	THOR_00 (TFC switch)
	1

	TTCtx
	15

	TTCoc (Optical coupler)
	150

	TTCrx
	1200

	L0 electronics

First Layer (L0FE_FST)

Second Layer (L0FE_SCD)

Third Layer (L0FE_THD)

Fourth Layer (L0FE_FTH)
	47520

7200

36000

3600

720

	TELL 1 boards

VEL0_A

VELO_C

PUS

RICH1

TT

IT

OT_A

OT_C

RICH2

PRS

ECAL+L0CALO

HCAL

MUON_A+L0MUON

MUON_C+L0MUON

L0DU
	384

46

45

12

24

48

45

31

38

36

11

13 +1 L0CALO

12

7 + 3 (L0MUON)

7 + 4 (L0MUON)

1

	Munin0
	15

	MuninL0_00
	1

	MuninL1_00
	1

	Total Number of devices
	49303

Table 1. Number of devices per type.

	Devicename
	Nb of destinations
	Nb of paths
	Execution time (mn)

	TFC switch
	384 (= nb of TELL1)

	36000 (equal to the number of L0FE_SCD)
	Try 1 : 1mn31s07
Try 2 : 1mn07s04

Try 3 : 1mn03s06

Try 4 : 1mn05s06

Try 5 : 1mn31s03

Avg_1: 1mn15s06

Avg_2: 1mn14s09

Table 2. Result of the destination table.

Generating the destination table is quite long, more than one minute. However it is important to note that this table is generated once and automatically updated if a change occurs in the connectivity. Before the start of a run, the destination table of the TFC switch is already generated. Thus the queries for partitioning can be performed straight away.
9.2.2 Routing algorithm applied to the Flower topology

Figure 3 represents the old design of the DAQ network (until summer 2005). The shortest path should always be selected if several routing paths to a same destination are found. This topology was very useful to check that the algorithm was robust against cycles.
[image: image3.jpg]FEs

343 FE and 102 SFCs

Gb Ethemet

— Levek1 Trafic

. HLT Traffic

Mixed Trafic

MS:multiplexer switch

Figure 3. Flower topology.

The links between Flow devices are bidirectional. They are interconnected. The other links are unidirectional. The link type is the same for all the links.

The host nodes are FEs, SFCs and sub-farm PCs (not shown in Figure 3).

Each FE (340 sources) is connected to a port of one MS (12 Multiplexer switches).

Each MS is connected to a port of a Flow switch (there are 6). The Flows switches are all interconnected. Then each SFC (102 sub-farm controllers) is connected to a port of a Flow switch. In other words, each Flow has 17 output ports connected to 17 SFCs. (17*6=102).

Each SFC is connected to a sub-farm switch which is connected to 20 sub-farm nodes.

The routing algorithms have been tested with the flower topology. The main idea behind was to test robustness against cycles. The routing tables of Flow_1 … Flow_5, MSs have been generated with success.

Table 3 presents the results. Figures in red represent the min and max values.

	Devicename
	Nb of destinations
	Nb of possible paths found
	Execution time

(in sec.)
	Nb of tries (out of 5)

	Flow_0
	102 (only the SFCs)
	5542
	19.02

5.04

6.05

6.09

22.02

Avg_1: 11.64

Avg_2: 10.39
	1

2

3

4

5

	Flow_3
	102 (only the SFCs)
	5542
	13.06

7.00

5.05

5.09

18.02

Avg_1 : 9.64

Avg_2 : 8.38
	1

2

3

4

5

	Flow_5
	102 (only the SFCs)
	5542
	9.05

8.06

9.03

10.08

21.00

Avg_1 :13.44

Avg_2 : 9.38
	1

2

3

4

5

	MS_03
	102 (only the SFCs)
	5542
	5.02

6.02

6.05

6.01

13.09

Avg_1 : 7.24

Avg_2 : 6.02
	1

2

3

4

5

	MS_10
	102 (only the SFCs)
	5542
	3.09

4.09

4.09

4.09

8.07

Avg_1 : 4.68

Avg_2 :4.09
	1

2

3

4

5

Table 3. Summary of the execution time of routing tables.

Here again it is important to understand that all the routing tables will be generating “offline”. Performance issues are not that relevant. What is essential is to ensure that the routing tables generated are correct and consistent. When the run starts, the ECS will load the routing tables from the CIC DB to PVSS and from PVSS to the switches. As the routing tables have been already generated, the loading is much faster see section 4.
Check that the number of paths for the Flow devices is correct

Let us note N the total number of Flow devices and M the number of connected outputs. We assume that M is the same for all the Flow devices.

Let us show that the number of possible paths in that case is given by the following formula, N>0 and k corresponds to the number of Flow devices in the path besides the first node:

[image: image4.emf]
Lemma

If there are N flow devices, the maximum path length is N. It corresponds to the one which goes through all the N Flow devices and ends at one SFC. And vice-versa, if the maximum path length is N, then there are N Flow devices. If the path length is equal to N, it means that there are N +1 devices. The nodes in the paths are either a SFC or a Flow device according to the Flower topology. We know that the last node in the path corresponds to a SFC. So there are N Flow devices.

So having N Flow devices is equivalent to having the maximum path length equals to N.

Let us count the number of paths group by p, the path length and proof that the number of paths which has a length equal to p is

[image: image5.emf]
We search for all the paths of length p, i.e. paths with p+1 nodes. The first node (Flow device) and last node (SFC) are fixed.

We need to select p-1 nodes out of N-1 (as there are N Flow devices and the first node is fixed). So there are Cp-1N-1 possibilities. As the order matters, we have (p-1)! Possible orders for the p-1 nodes. Indeed the path (Flow_0, Flow_1, Flow_2) is not the same as the path (Flow_0, Flow_2, Flow_1).

So in total we have M (p-1) Cp-1N-1 possible paths, which correspond to the formula if we develop the combination operator. In fact it is a permutation of p-1 elements among N-1.

Then we just sum up the number of paths group by p, over p.

[image: image6.emf]
P corresponds to the path length, so it is between 1 and N. In the first formula, k is the number of Flow devices in the path, we have k=p-1. Indeed if the path length p is 1, it means that we did not select a Flow device as the first one is fixed. So k=0. Same remark if p=N.
N.B: the same number of paths group by path hop has been found by the routing algorithm. By symmetry of the topology (rotation), the number of possible paths is the same for any flower.

9.2.3 Routing algorithm applied to the DAQ topology

[image: image7.jpg]Distribution
switch

data

ITELL1_340

Mixed traffic
control

DAQ_ROUTER_1

—_—
~—— storage
—_

MEP request

10 links
of data

storage Controls
PC

Controls
PC

Figure 4. The DAQ foreseen topology.

Figure 4 describes the foreseen DAQ system connectivity. There are different types of links. The routing tables of DAQ_ROUTER_1, DS_1 to DS_50 and DS and CS_1 to CS_50 (Control Switch) should be generated.

The host nodes are the farm nodes (Trigger Farm + Local Storage), the TELL1 boards, the readout supervisors and the controls PCs.

In the tests, there were 329 TELL1 boards connected twice to DAQ_ROUTER_1. Then there were 10 links between DAQ_ROUTER_1 and each of the 50 DS (Distribution Switch). Each DS is connected to 40 farm nodes. There is one link between DS and DAQ_ROUTER for MEP request, for the readout supervisor. There are 16 readout supervisors which are connected to the DAQ_ROUTER_1. The storage has been represented as sub-farm with 50 PCs. The TELL1 boards are controlled by controls PC via Control Switches, but it is not shown in Figure 4.

Only the links between DSs and farm nodes are bidirectional, the other ones are unidirectional. There are four types of links, data, control, storage and mep_request. Only the links between DSs and farm nodes carry a mixture of traffic, storage, mep_request and data.

With this topology, I verified that my algorithm produced consistent routing tables. Consider the routing table of the DAQ_ROUTER_1. The possible destinations are the 2000 farm nodes and the 16 readout supervisors. To send a packet to a given farm node there are 10 possible paths as there are 10 links from DAQ_ROUTER_1 to a given DS. However, only one out of the 10 links should be selected, otherwise the routing table is inconsistent as the router will not know to which output port it should forward the packet. The link type compatibilities are also been checked. For instance, none of the farm nodes of the local storage are in the routing table of DAQ_ROUTER_1 as data traffic is incompatible with storage traffic.

	Devicename
	Nb of destinations
	Nb of possible paths found

	Execution time

(in sec.)
	Nb of tries (out of 5)

	DAQ_ROUTER_1
	2000 + 16 (the farm nodes of the EFF

+ 16 readout sup.)
	2016 (without taking into account port)

20016, with ports
	15.06

12.06

12.02

13.02

15.09

Avg_1: 13.45

Avg_2 : 13.38
	1

2

3

4

5

	DS_1
	40 +50 + 16 (the farm nodes + PCs part of the storage + readout supervisors)
	106 in both cases
	3.02

2.02

3.01

3.02

4.04

Avg_1 : 3.02

Avg_2 : 3.02
	1

2

3

4

5

	DS_40
	40 +50 + 16 (the farm nodes + PCs part of the storage + readout supervisors)
	106 in both cases
	3.08

3.04

3.01

3.02

4.00

Avg_1 : 3.23

Avg_2 : 3.05
	1

2

3

4

5

	DS
	50 (only the storage PCs)
	50 in both cases
	3.00

2.06

2.08

5.02

8.01

Avg_1: 4.03

Avg_2 : 3.37
	1

2

3

4

5

	CS_20
	40 (only farm nodes)
	40 in both cases
	3.05

4.03

3.02

3.00

8.07

Avg_1: 4.23 Avg_2 : 3.37
	1

2

3

4

5

Table 4. Result for the DAQ foreseen topology.

9.2.4 Generating all the routing tables for the DAQ system

Another test was to generate all the routing tables of the DAQ system in one go, sequentially. So I wanted to measure the execution time of 50+50+1+1=102 routing tables, resp. DS, CS, DAQ_ROUTER_1 and DS_STORAGE.

Here again, I have repeated 5 times the test using a PL/SQL script. It has been executed from SQL*plus. The results are presented in Table 5.

	Try
	Execution time (sec)

	1

2

3

4

5

	63

79

96

84

86

Avg _1: 82

Avg_2 : 83

Table 5. Execution time for generating routing tables.

N.B: in the DAQ system, there is equivalence between intermediate nodes and switches. So to select all the DAQ switches we just select devices which belong to the DAQ system and FUNCTIONAL_DEVICES.node=0.

The advantage of generating the routing tables sequentially is that the first part of the algorithm is performed once. Indeed as all the switches are in the same system, i.e. DAQ, LINK_PAIRS and AGGREGATED_LINKS table have exactly the same content whatever the switch given in input. So there is no need to repeat this operation 102 times, once is sufficient. That is why the execution time of generating all the routing tables is not very high; all the more the first part takes most of the execution time as it is explained in section 3.3.

In my case, the routing table of DAQ switches is automatically generated and maintained using the previous SQL statement after having inserted DAQ connectivity. So there is no need to create them.
9.3 Analysis of the test results

9.3.1 Robustness

Using the previous topology, I could check that the routing algorithm was robust against cycles and produced consistent routing tables.

Also I verified that the destinations and the number of possible paths found were correct.

Even if it is very unlikely that creating a routing table is performed concurrently, I have tested this situation. It worked in the sense that the routing tables were created properly and no SQL statements failed. For instance in one of the versions, I used sequences for the pathid. A sequence was created whenever a new switch as input parameter was given. If the sequence already exists, I set it back to 1. This statement fails if executed for the same switch at the same time.

9.3.2 Performance optimization

We have mentioned that performance is not really an issue. There was no requirement on generating the routing tables. However as a computing scientist and to improve my knowledge on database queries, I wanted to tune my algorithm as much as possible.
The performance was optimized together with the central database support on the basis of detailed execution trace files.
In the first version of the algorithm, generating a routing table like DAQ_FLOW took around 40 sec and now around 10 s. The generation of 6 routing tables took 3mn34 sec. So there was an improvement of a factor of 4 which is not negligible. In routingtable_pck PL/SQL package, there is an extensive use of:

· Bind variables (it allows producing generic SQL statements and it reduces the parse execution time [1]);

· Temporary tables as temporary storage of the results (the main advantage is the content of these table is private to the session);

· Native Dynamic SQL instead of the DBMS_SQL package;

· Avoid functions in the WHERE clause if possible to allow index usage;

· Join instead of IN : for instance use of

“select t.devicename from FUNCTIONAL_DEVICES t, FUNCTIONAL_DEVICE_TYPES e where t.devicetypeid=e.devicetypeid and e.devicetype like ‘DAQ_SWITCH_4_’ ;”

Instead of:

“select devicename from FUNCTIONAL_DEVICES where devicetypeid in (select devicetypeid from FUNCTIONAL_DEVICE_TYPES where e.devicetype like ‘DAQ_SWITCH_4_’) ;”

These tuning issues enable to improve the performance when generating routing tables sequentially. The SQL queries are cached in memory and data blocks already used are searched in memory instead of physical memory.

9.3.3 Analysis of the routing algorithm by parts

The algorithm has four parts which have different contributions to the total execution time. In my previous tests, the average execution time taken by each of these four parts is shown in Table 6. I used the dbms_utility, an Oracle package to measure the time taken by each of the four blocks.

An analysis of the results shows that:

· For switches in {Flow_0, Flow_3, Flow_5, MS_03, MS_10}, the last part, i.e. inserting everything in PATH_LINES and ROUTING_TABLE, takes most of the execution time (around 45.7 %). The second part, i.e. finding all the paths, is the fastest. It represents around 6% of the execution time. The first (filling the AGGREGATED_LINKS and LINK_PAIRS) and the third (mapping with portid and selecting one routing path per pair of [destination, network interface]) parts represent 19.5% and 28.8%, respectively.

· For switches in {DS_1, DS_40, DS, CS_20}, the first part takes most of the execution time with 83.1%. The second part is still the fastest with 2.2%. The third and fourth parts represent 11.1% and 3.6% respectively.

· DAQ_ROUTER_1 is special. The second part is still the fastest (0.7%). The third part takes the most of the execution time with 44.6%. Then it is the fourth part with 34.8%.

The second part is always the fastest to be executed. It can be explained by the fact that the SQL statements in this function are against LINK_PAIRS and PATH_LINES_TEMP tables which have some thousands rows (never more than ten thousands rows), so the table size is small. Then the fact that the second part takes more time for {Flow_0, Flow_3, Flow_5, MS_03, MS_10} is due to the maximum path length. The maximum path length for these devices is respectively {6, 6, 6, 7, 7} whereas for {DAQ_ROUTER_1, DS_1, DS_40, DS, CS_20}, the maximum path length is {2, 2, 2, 1, 1}.
	Devicename
	Block
	Distribution time in %

	Flow_0
	1

2

3

4
	22.8

5

25.7

46.5

	Flow_3
	1

2

3

4
	13.9

5.9

26.4

53.8

	Flow_5
	1

2

3

4
	18.7

5.5

28.3

47.5

	MS_03
	1

2

3

4
	21.8

7.2

32.8

38.2

	MS_10
	1

2

3

4
	20.3

6.5

30.8

42.4

	DAQ_ROUTER_1
	1

2

3

4
	19.9

0.7

44.6

34.8

	DS_1
	1

2

3

4
	82.7

1.5

12.1

3.7

	DS_40
	1

2

3

4
	82.5

1.6

13.1

2.8

	DS
	1

2

3

4
	82.8

3.3

10.2

3.7

	CS_20
	1

2

3

4
	84.4

2.6

9.1

3.9

Table 6. Average time distribution per part.

The third part has the highest execution time for DAQ_ROUTER_1. This is because of the ten links between DAQ_ROUTER_1 and DAQ_DS_XX. So the number of paths found with the second function is multiplied by ten. In the other cases, there is only one link between devices. So there are fewer rows inserted in ROUTING_TABLE_TEMP than for DAQ_ROUTER_1 (less than 150 against more than 20000). Also, in this step one routing valid path is selected by distinct pairs of [destination, network interface]. The SQL statement is faster when there is only one choice and when the number of destinations is smaller.

The fourth part takes most of the execution time for {Flow_0, Flow_3, Flow_5, MS_03, MS_10}. This function inserts and deletes the biggest number of rows with CHECK options (primary key, foreign key, etc.), as temporary tables have no check options. Even for DAQ_ROUTER_1 this part is quite time consuming but less than the third because of the routing path selection. There are a lot of rows which are inserted during these two parts.

The first part takes most of the execution time for {DS_1, DS_40, DS, CS_20} because compared to the other functions; the number of rows processed is smaller. Indeed the first part inserts around 4550 links in AGGREGATED_LINKS and around 50 in LINK_PAIRS whereas the other functions inserts less than 150 rows.

To sum up, the execution time of creating a routing table depends on:

· The number of aggregated links (or logical links) in the system connectivity (the first part is influenced).

· The maximum path length (second part)

· The number of redundant links for the first and last links in the routing path found (third part)

· The number of distinct pairs [destination, network interface] (third part)

The higher these parameters, the slower the execution time is.
9.3.4 Analysis of the destination algorithm by parts

The second part is not the fastest because of the maximum path length, equal to 8.

The first part is faster as there is no bidirectional link, so the number of insert statement is reduced.

	Devicename
	Part
	Distribution time in %

	THOR_00
	1

2

3

4
	12.36

19.39

39.09

29.16

Table 7. Average time per part for the TFC switch.

The third part is the highest because of the complex insert statement, similar to the routing tables. The fourth part is still higher because of the total number of paths (36000).

The number of nodes and links for the TFC system is higher than in the DAQ system, hence a higher execution time. The maximum path length is also higher.

9.3.5 Parameters which have an impact on the different steps of the algorithm

The execution time of a routing or of a destination table is not fixed. It depends mainly on the following parameters:

· The number of links stored in the connectivity table. A link should be counted twice if the link is bidirectional. These two numbers have an impact on the first part of the algorithm which fills the AGGREGATED_LINKS and LINK_PAIRS tables.

In the TFC system there are a lot of links roughly 85309 links (no bidirectional link) stored in the connectivity table. In the DAQ system, there are roughly 5384 links + 2000 bidirectional links for the current version and around 2611 links + 15 bidirectional links for the Flower topology. It takes 3.48 sec in average to perform it for the DAQ flower topology, 3.54 sec for the DAQ current topology and 9.88 sec for the TFC system. For the HCAL connectivity composed of 13952 unidirectional links, it takes 4.3 sec. Figure 5 shows that the execution time is a linear function of the number of rows (equation y=7.82*10-5x+3.2). It takes roughly 3 sec to execute the SQL statements which return no rows. In that case both tables AGGREGATED_LINKS and LINK_PAIRS are empty. We could check the result by inserting a functional device which is not connected and part of a fake subsystem.

[image: image8.emf]0

2

4

6

8

10

12

0 50000 100000

number of links

execution time of the first part (sec)

Series1

Figure 5. Impact number of links on the execution time.

The number of links has also an influence on the second part of the algorithm as the LINK_PAIRS table will be contain more rows.
· The maximum path length is also important, especially for the second part of the algorithm which finds the valid paths. This parameter is not obvious to quantify as it depends on the number of links and also on the number of paths grouped by path length. Table 8 shows the impact of the maximum path length. The longest path found is in the TFC system. Also this system contains the most number of paths.

	
	Length<=3

sec/nb of paths
	Length=4

sec/nb of paths
	Length=5

sec/nb of paths
	Length=6

sec/nb of paths
	Length>=7
sec/nb of paths

	DAQ_FLOW
	0.05 sec/ 123+340
	0.10sec/1020
	0.13sec/2040
	0.14sec/2040
	

	DAQ_ROUTER
	0.07 sec/2016
	
	
	
	

	TFC_SWITCH
	0.26 sec/0
	0.58sec/0
	3.18sec/0
	9.36sec/0
	21.58/36000

	HCAL_PMT
	0.01sec/3
	
	
	
	

Table 8. Influence of the maximum path length.

9.4 Loading the routing table into a switch

After describing the generation of the routing tables the next section will detail how the generated information is loaded into the switch.

In chapter 8, displaying the routing tables in PVSS has been explained. Some figures about the execution time and how to load the routing table into a switch are exposed.
9.4.1 Loading the routing tables from the CIC DB to PVSS

It takes roughly 0.125s to load a routing table of a distributed switch from the CIC DB to PVSS, on Windows and on Linux, it takes roughly 0.075s (see Figure 6). Loading the routing table of DAQ_ROUTER_1 requires more time, 0.875 s on Windows and 0.458 s on Linux. One reason may be that PVSS runs faster on Linux than on Windows as it uses a lot of sockets to communicate between the different managers.

[image: image9.jpg]Fie view

L=101)

l

B 5) & x|

s[F

.03 16:59:08.296, SYS,

PVSSOONG1:["time to execute tl1

| Y |

PVSSO0event (D). 2006.07
PVSSOOctrl (B). 2006.07.03 16:59:08.311, SYS.
PVSSOOctrl (8). 2006.07.03 16:59:08.311, SYS.
PVSSOOctrl (B). 2006.07.03 16:59:08.374, SYS.
PVSSOONG1: OCT Connection

PVSSOONG1:Successful Loading

PVSSOONGI:["in the pid_list:"]["DAQ_SWITCH 04"
PVSSOONGI: ["switch="] ["DAQ_SWITCH_04"]
PVSSOONGI:method 1 time= D.094

PVSSOONGI: ["time to execute t1 :"][Mon Jul 03 16
PVSSOONGI: ["time to execute t2 :"][Mon Jul D3 16
PVSSOONGI: ["destin="][106

PVSSOONGI:["in the pid_list:"]["DAQ_ROUTER_1"
PVSSOONGI: ["switch="] ["DAQ_ROUTER_1"
PVSSOONGI:method 1 time= D.844

PVSSOONGI: ["time to execute t1 :"][Mon Jul 03 16
PVSSOONGI: ["time to execute t2 :"][Mon Jul D3 16
PVSSOONGI: ["destin="][2016

PVSSOONGI: ["in the pid_list:"]["DAQ_SWITCH 60"
PVSSOONGI: ["switch="] ["DAQ_SWITCH 60"]

PVSSOONG1 0.078

+"][Mon Jul 03 17:

[

PVSSOONGI: ["time to execute t2 :"][Mon Jul 03 17
PVSSOONG1: ["destin="][50

PVSSOOdata (D). 2006.07.03 17:00:05.841, IMPL,
PVSSO0databg (1), 2006.07.03 17:00:06.419, SYS.
PVSSO0databy (1), 2006.07.03 17:00:06.435, SYS.
PVSSO0databy (1). 2006.07.03 17:00:06.529, SYS.
PVSSO0data (D). 2006.07.03 17:00:06.544, SYS.
PVSSO0databg (1). 2006.07.03 17:00:06.810, SYS.

INFO,
INFO,

SEVERE,

INFO,

59:
59:

25
25

59:
59:

47
48

00:04
00:04

INFO,
INFO,
INFO,
INFO,
INFO,
INFO,

2006
2006

2006
2006

2006
2006

39,
39,
54,

2.

170]
295]

232]
107]

404]

Connection lost, MAN: (SYS: 1 Ctrl -num 8
Connection lost, MAN: (SYS: 1 Event -mum 0
Unexpected state, CtrlMgr, doComnectionClos
Manager Stop

successfully established and current version of the library v2.14

. DataManager, startBgMgr, (Re)starting PVE

Manager Start, PROJ, DAQ, V 3.0 - 3.0 link

Trying to comnect to, (SYS: 0 Data -num O C

Connected to, (SYS: 0 Data -num D CONN: 1)

Connected to, (SYS: 1 Data -num 1 CONN: 1)

Tnitialization by Data Manager finished
»

[image: image10.jpg]Eile View

b3 Ea| B 2 2 ix [[1[W[S[F

GiT B T T. 689, S INFO,
PVSS00uil: OCI Connmection successfully established and
PVSS00uil:Successful Loading
PVSS00uil: ["in the pid_list: "] ["DAQ_SWITCH_04"
PVES00uil: ["switch="]["DAQ_SWITCH_04"]
PVSS00uil:method 1 time= 0
PVSS00uil: ["time to execute ti :'][Mon Jul 3 17:02:22 2006 815
PVSS00uil: ["time to execute t2 :'][Mon Jul 3 17:02:22 2006 830
PVES800uil: ["destin_len="][106
PVSS00uil: ["in the pid_list:"] ["DAQ_ROUTER_1"
PVES800uil: ["switch="]["DAQ_ROUTER_1"
PVSS00uil:method 1 time= 0.04
PVSS00uil: ["time to execute tl :'][Mon Jul 3 17:02:41 2006 707
PVSS00uil: ["time to execute t2 :'][Mon Jul 3 17:02:42 2006 165
PVE800uil: ["destin_len="][2016
PVSS00data (0), 2006.07.03 17:03:00.143, IMPL, INFO, 0
PVS500databg (1), 2006.07.03 3:00.177, syYs, INFO, 1
PVSS00databg (1), 2006.07.03 3:00.178, sYs, INFO, 3
PVS500databg (1), 2006.07.03 3:00.179, sYs, INFO, 4
PVSS00data (0], 2006.07.03 3:00.180, SYs, INFO, 4
PVSS00databg (1), 2006.07.03 17:03:00.288, SYS, INFO, 6
PVSS00uil: ["in the pid_list: "] ["DAQ_SWITCH_60"
PVES00uil: ["switch="]["DAQ_SWITCH_60"
PVSS00uilimethod 1 time= 0.01
PVSS00uil: ["time to execute t1 :'][Mon Jul 3 17:03:12 2006 821
PVSS00uil: ["time to execute t2 :'][Mon Jul 3 17:03:12 2006 877
PVE800uil: ["destin_len="][50]

EI

Wanager Stop

current version of the library v2.14

, DataManager,
Manager Start,

startBglgr, (Re)starting PVSSO0
PROJ, cic_db, V 3.0 - 3.0 - 1 Pt

Trying to connect to, (S¥S: 0 Data -num 0 CONN
Connected to, (S¥S: 0 Data -num 0 CONN: 1) @ 1c
Connected to, (S¥S: 0 Data -num 1 CONN: 1) @ 1c

Tnitialization by Data Manager finished

. E

Figure 6. Execution time to load a routing table from the CIC DB to PVSS. The output at the top is from Windows, the one at the bottom, from Linux.

9.4.2 Loading the routing tables from PVSS to a physical switch

There are several ways to load a routing table into a switch/router. It depends a lot on the type of switches. However the principles are the same:

· Open a telnet communication via the port 23 of the switch, using a socket;

· answer the questions asked by the switch to program the routing table ;

· write a program to insert the routing table into the switch, knowing the order of the questions.

As a proof of the concept, I wrote a server to load and check the loading of a routing table from PVSS to a switch.

Figure 9
 illustrates the principles of the implementation. Using the CIC DB PVSS library, the routing table of a selected switch can be loaded into PVSS.

Then the routing table is loaded into the selected switch (DAQ_SWITCH_06, in the example) via the RT_server. The RT_server receives the routing table from PVSS via DIM, a light weight protocol [2] similar to CORBA [3]. Then the RT_server opens a socket on the telnet port of the switch and inserts the routing table as if it was in front of a command line.

[image: image11.jpg][DAQ_SWITCH_06)

CICDB lib

S

Figure 9. Principles of loading a routing table into a switch.

This part has to be adapted by the network team as the implementation depends on the type of switch.

9.5 Generation and loading the dhcp config file into a dhcp server
Here also performance is not really an issue as the dhcp config files will also be generated “offline”. The essential point was to test that the IP address assignment to the DAQ hosts obtained by creating the dhcp config file was correct and is accepted by the DHCP server.
9.5.1 Prerequisites

To allow automatic creation of a DHCP config file, the following components are required:

· Linux operating system

· Perl

· Perl DBI module to query the configuration database

· Perl XSLT module to allow the use of XSLT functionalities

· Connectivity with the IP information and boot image information tables filled accordingly in the CIC DB

· Tns_names.ora to locate the CIC DB

9.5.2 Usage

First the user inserts the generic options in “dhcp_options.xml”.

Then, in a command line, the user types “perl dhcpCfg_generate.pl <dhcp_server_name>” as shown in Figure 10. In the example, we generate the dhcp_conf for DAQ_CTRLPC_08.

[image: image12.jpg]optionss option routers 137.1538.1.1 || ~/prog/dhcpd_src >

m ~/prog/dhcpd_src > perl dhcpCfg_generate.pl DAQ_CTRLPC_O8

dhcp_name= DAQ_CTRLPC_O8dhcp name= DAQ_CTRLPC_OSoptions= ddns-update-style ad-hoc
options= deny unknown—clients

options= use-host-decl-names on

options= always-reply-rfcl048 true

options= domain-name-servers 137.138.16.5

loptions= option routers 137.138.1.1 ~/prog/dhcpd_src > |

Figure 10. Generating the dhcpconfig file from a cmd line

The dhcp_file.xml and an extract of the dhcpd.conf are shown in Appendix C.

It takes in average 40 sec to generate the “dhcpd.conf” file. There are 40 host nodes which get their IP addresses from DAQ_CTRLPC_08 as one can expect it.

Then with the help of the network team, the “dhcpd.conf” produced by this application has been copied to etc/dhcpd.conf of the dhcp_server. The file has been accepted and the test was successful.

The other test was to exclude 10 farm nodes and check that they have disappeared from the “dhcpd.conf”. Farm nodes from ‘DAQ_NODE_08_00’ to ‘DAQ_NODE_08_09’ have been excluded, i.e. FUNCTIONAL_DEVICES.nodeused=0. The farm nodes excluded are not in “dhcpd.conf” any longer.
9.6 Conclusion
This chapter has presented the tests carried out to verify the robustness of the routing and destination algorithms. Performance on the execution to create these tables was not an issue. It takes between 5 sec and 1mn15 sec to generate a routing table or a destination table depending on the router or server and the topology of the system. The algorithm depends on two parameters, the maximum path length (less than 10) and the number of links of the connectivity. Verifying the correctness of the routing and destination tables was essential to ensure events data routing from the TELL1 to the farm nodes and to configure the network equipment with IP addresses.
The routing and destination tables are automatically maintained by the routingtable_pck PL/SQL package. No human intervention is required to update the content of the tables as the package has been implemented following the autonomics guidelines.
Loading these tables from the CIC DB to PVSS should be fast, less than a few seconds. It takes between 0.075s and 0.875 s to load the routing tables, depending on the size of the routing table and on the operating system (PVSS runs faster on Linux than Windows). So the requirements are satisfied.
References

[1] Thomas Kyte, Effective Oracle by Design, 2003. Ed Osborne: Oracle Press.

ISBN 0-07-223065-7
[2] DIM Distribution Interface Management, http://dim.web.cern.ch/dim/
[3] CORBA, http://www.corba.org/
� The two PVSS panels shown are respectively � REF _Ref138220955 \h ��Figure 7� and � REF _Ref138220959 \h ��Figure 8�.

