

An autonomic approach to configure HEP (High Energy
Physics) experiments, applied to LHCb (Large Hadron

Collider beauty)

Une approche « autonomic » pour la configuration d’une
expérience PHE (Physique des Hautes Energies), appliquée

à LHCb (Large Hadron Collider beauty)

Lana Abadie, October 2006

A thesis submitted for the degree of Doctor of Philosophy in Computing Sciences of the

University Paris VI

Thesis supervised by Monique Becker
Defended December 15th , 2006

Jury:
Claude Girault : Président du Jury
Ad Aerts : Rapporteur
Dirk Duellmann : Rapporteur
Philippe Charpentier : Examinateur
Monique Becker : Directeur
Eric van Herwijnen : Co-directeur
Pierre Vincent : Co-directeur

 2

 3

To the most wonderful parents in the world

 4

 5

 Impose ta chance, serre ton bonheur, va vers ton risque…
A te regarder, ils s’habitueront.

RENE CHAR, Les Matinaux.

 6

Table of Contents

Table of Contents ... 6
Table of Figures ... 14
Abstract .. 18
Résumé ... 19
Résumé par chapitre de la thèse (en français) .. 20

Chapitre 1 Introduction à l’expérience LHCb.. 20
Chapitre 2 Configurer l’expérience LHCb... 22
Chapitre 3 L’architecture logicielle.. 23
Chapitre 4 Besoins et cas d’usages .. 24
Chapitre 5 Le schéma des tables de la LHCb CIC DB .. 25
Chapitre 6 Création automatique de tables de routage et de destination avec PL/SQL....... 27
Chapitre 7 La couche traitement des données.. 30
Chapitre 8 Structure de la couche présentation des données ... 32
Chapitre 9 Validation des algorithmes de routage et de destination 33
Chapitre 10 Validation de CIC_DB_lib ... 35
Chapitre 11 Autres domaines où la LHCb CIC DB peut être utilisée.................................. 37
Conclusion.. 38

General introduction... 40
The configuration of large physics experiments .. 40
The Experiment Control System.. 40
Autonomics .. 41
The ECS software architecture and its constraints... 41
Objectives of the thesis .. 42
Contribution of the thesis ... 42

Methodology .. 42
Software architecture.. 43
Fault detection and verification of correctness .. 44
Performance Issues... 44
Organization of this thesis.. 44

References .. 47
Chapter 1 Overview of the LHCb experiment ... 50

1.1 Purpose of HEP experiments.. 50
1.2 The characteristics of the LHCb experiment.. 50

1.2.1 Physics objectives ... 51
1.2.2 Subdetectors .. 53
1.2.3 Online system.. 54

1.2.3.1 The Trigger... 54
1.2.3.2 The DAQ .. 55
1.2.3.3 The TFC ... 57
1.2.3.4 The ECS ... 59

1.2.4 Offline ... 60
1.2.5 Operating the detector ... 60
1.2.6 Equipment management .. 61

1.3 The ECS ... 61
1.3.1 Control system architecture... 61
1.3.2 Controls software .. 62

1.3.2.1 PVSS .. 62

 7

1.3.2.2 DIM .. 63
1.3.2.3 FSM.. 63
1.3.2.4 Modeling the behavior and states of a device with FSM 65

1.3.3 Use of the CIC DB and its autonomic tools .. 65
1.3.4 Configuring the detector.. 65

1.4 Conclusion.. 68
References .. 69

Chapter 2 Configuring the LHCb experiment.. 72
2.1 Configuring the electronics .. 72

2.1.1 New and different types of electronics.. 72
2.1.2 A very large number of items to configure ... 73
2.1.3 Using the connectivity to configure devices ... 75

2.2 Configuring network equipment .. 76
2.2.1 The DAQ network (reminder)... 76
2.2.2 Network definitions... 76

2.2.2.1 IP packet and Ethernet frame ... 76
2.2.2.2 Hosts... 77
2.2.2.3 Address Resolution Protocol (ARP) .. 77
2.2.2.4 Subnet and IP Subnet ... 78
2.2.2.5 Network Gateway device ... 78
2.2.2.6 IP routing (over Ethernet) .. 78
2.2.2.7 IP routing table ... 80
2.2.2.8 Dynamic Host Configuration Protocol (DHCP) .. 80
2.2.2.9 Domain Name System.. 82

2.2.3 Network configuration .. 85
2.3 Configuring partitions for the TFC .. 85

2.3.1 Impact on the TFC system .. 86
2.3.2 Programming the TFC switch ... 86
2.3.3 Subsystems from the FSM view.. 87
2.3.4 Subsystems from the TFC view .. 88

2.4 Equipment management... 88
2.4.1 Device status ... 88
2.4.2 Allowed transitions of status ... 89
2.4.3 Inventory ... 89

2.5 Fault detection and verification of the correctness... 89
2.5.1 Verifying the configuration of the modules .. 89
2.5.2 Tests of links ... 90

2.5.2.1 Issues .. 90
2.5.2.2 Macroscopic and microscopic connectivity ... 90
2.5.2.3 Internal connectivity of a board ... 92

2.6 Performance measurements.. 93
2.7 Conclusion.. 93
References .. 95

Chapter 3 Software architecture... 96
3.1 Outline of the architecture.. 96
3.2 Description of the 3-Tier architecture .. 97

3.2.1 Database layer ... 97
3.2.2 Object layer ... 97
3.2.3 GUI layer... 98

3.3 The API .. 98

 8

3.4 Choice of the languages ... 99
3.4.1 Oracle and PL/SQL ... 99
3.4.2 Use of C and OCI, Python and Perl .. 99
3.4.3 Use of BOOST, XSLT and GEH .. 100

3.5 Conclusion.. 100
References .. 101

Chapter 4 Requirements and use cases .. 102
4.1 Methodology .. 102

4.1.1 Identifying the users of the CIC DB.. 102
4.1.2 Listing the requirements.. 103
4.1.3 Collecting use cases .. 103
4.1.4 Understanding the LHCb environment ... 104
4.1.5 Building the CIC DB table schema ... 104
4.1.6 Integrating and developing tools ... 104
4.1.7 Test and validation .. 105

4.2 Requirements.. 105
4.2.1 Common and user specific requirements for the table schema............................. 105

4.2.1.1 Completeness and consistency ... 105
4.2.1.2 Performance ... 105
4.2.1.3 Extensibility ... 105
4.2.1.4 Generic schema .. 106

4.2.2 Requirements for integration in the LHCb environment 106
4.2.3 User interface requirements .. 106
4.2.4 Security requirements.. 106

4.3 Use Cases ... 107
4.3.1 Recipes .. 107
4.3.2 Networking.. 108
4.3.3 Partitioning .. 109
4.3.4 Equipment management .. 110

4.3.4.1 Scenarios .. 110
4.3.4.2 Device status .. 111
4.3.4.3 Allowed transitions .. 111
4.3.4.4 Duality between hardware and functional devices... 112
4.3.4.5 Queries ... 113

4.3.5 Fault detection ... 113
4.4 Conclusion.. 114

References .. 115
Chapter 5 The LHCb CIC DB schema... 116

5.1 Introduction .. 116
5.1.1 Why the ERM?.. 116
5.1.2 Designing the table schema... 116
5.1.3 Conventions... 116

5.2. Entity Relationship Model (ERM) .. 117
5.2.1 Entity ... 117
5.2.2 Attributes... 117
5.2.3 Relationships ... 117
5.2.4 ERM diagrams... 118

5.3 From ERM to RM .. 119
5.3.1 Tables .. 119
5.3.2 Keys... 120

 9

5.4 Recipe representation ... 122
5.4.1 Entity & relationship ... 122
5.4.2 Representation with tables .. 122

5.5 Inventory and history design .. 123
5.5.1 Entity & relationship ... 123
5.5.2 Table schema... 128

5.6 Connectivity design.. 130
5.6.1 Introduction ... 130
5.6.2 Boot image: entity & relationship model .. 130
5.6.3 Partitioning representation .. 131
5.6.4 Subsystem representation.. 133

5.6.5.1 Intuitive model ... 133
5.6.4.2 Use of prime numbers .. 134
5.6.4.3 Performance comparisons .. 136
5.6.4.4 Limitations of the prime number algorithm ... 137
5.6.4.5 Link type representation... 141
5.6.4.6 Function representation .. 141

5.6.5 Entity & relationship ... 141
5.6.6 Board components... 144
5.6.7 Table schema... 144
5.6.8 A more complex table schema .. 146

5.7 Verification of the completeness of the table schema.. 148
5.8 Conclusion.. 151
References .. 152

Chapter 6 Automated creation of routing and destination tables using PL/SQL 154
6.1 Introduction .. 154

6.1.1 Problem ... 154
6.1.2 Intermediate and host nodes and paths.. 154
6.1.3 Link and path weights ... 155

6.2 Algorithm to generate routing tables.. 156
6.2.1 Routing tables (reminder).. 156
6.2.2 Principles of the algorithm .. 157
6.2.3 Convention .. 158
6.2.4 Initialization .. 158
6.2.5 Body .. 160
6.2.6 Routing table ... 161
6.2.7 PL/SQL package ... 162
6.2.8 Completeness of the algorithm.. 162

6.3 Extensions of the routing table algorithm .. 163
6.3.1 Partitioning .. 163

6.3.1.1 Destination table... 163
6.3.1.2 Algorithm principles .. 164
6.3.1.3 Example of the TFC switch.. 164

6.3.2 Generating the DCHP config file .. 166
6.4 Other PL/SQL programs .. 166
6.5 Conclusion.. 166
References .. 168

Chapter 7 Implementation of the object layer .. 170
7.1 Use of Perl scripts to generate config files... 170

7.1.1 DHCP config file... 170

 10

7.1.1.1 Methodology .. 170
7.1.1.2 Generating and formatting the dhcp config file ... 171
7.1.1.3 Excluding nodes ... 173
7.1.1.4 Including nodes .. 174
7.1.1.5 Autonomics set up.. 174

7.1.2 DNS files ... 175
7.1.2.1 Outline of creating the DNS forwarding file.. 175
7.1.2.2 Outline of creating the DNS reversing file... 176
7.1.2.3 Autonomics setup... 178

7.2 CIC_DB_lib, a C-library to query the CIC DB.. 178
7.2.1 Implementation guidelines .. 178

7.2.1.1 The CIC_DB_lib API... 178
7.2.1.2 Use of OCI ... 179
7.2.1.3 Output format of a SELECT query .. 179
7.2.1.4 Use of a memory cache for INSERT and UPDATE...................................... 179
7.2.1.5 Querying paths between 2 devices ... 180
7.2.1.6 Error Handling.. 181
7.2.1.7 Building CIC_DB_lib .. 182

7.2.2 Features of CIC_DB_lib.. 182
7.2.2.1 Memory management... 182
7.2.2.2 Security... 182
7.2.2.3 Consistency .. 183
7.2.2.4 Concurrency ... 186
7.2.2.5 Autonomics .. 187

7.2.3 Issues ... 187
7.3 Bindings ... 187

7.3.1 Implementation of the PVSS CIC_DB_lib ... 187
7.3.2 Implementation of the Python CIC_DB_lib.. 188

7.4 A PVSS library for recipes... 190
7.5 Conclusion.. 190
References .. 191

Chapter 8 Structure of the GUI layer ... 192
8.1 CDBVis, a graphical editor .. 192

8.1.1 Features ... 192
8.1.2 Implementation.. 199
8.1.3 Issues ... 200

8.2 The DHCP and DNS config files ... 201
8.2.1 XML output... 201
8.2.2 Conversion using XSLT.. 202

8.3 Use of PVSS panels.. 204
8.3.1 Handling partitioning .. 204
8.3.2 Recipes .. 206
8.3.3 Combining connectivity and configuration parameters .. 212
8.3.4 Displaying the routing table in PVSS ... 212

8.4 Conclusion.. 214
References .. 215

Chapter 9 Validation of the routing and destination algorithms .. 216
9.1 Outline of the routingtable_pck package (reminder) ... 216
9.2 Robustness of the routing and destination algorithms to different topologies............. 217

9.2.1 Destination algorithm applied to the TFC system... 217

 11

9.2.2 Routing algorithm applied to the Flower topology ... 220
9.2.3 Routing algorithm applied to the DAQ topology.. 222
9.2.4 Generating all the routing tables for the DAQ system .. 225

9.3 Comments on the test results.. 225
9.3.1 Robustness... 225
9.3.2 Performance optimization ... 226
9.3.3 Analysis of the routing algorithm by parts.. 226
9.3.4 Analysis of the destination algorithm by parts.. 228
9.3.5 Parameters which have an impact on the different steps of the algorithm............ 229

9.4 Loading the routing table into a switch.. 230
9.4.1 Loading the routing tables from the CIC DB to PVSS ... 230
9.4.2 Loading the routing tables from PVSS to a physical switch................................. 231

9.5 Generation and loading the dhcp config file into a DHCP server................................ 232
9.5.1 Prerequisites .. 232
9.5.2 Usage... 233

9.6 Conclusion.. 233
References .. 235

Chapter 10 Validation of the CIC_DB_lib... 236
10.1 Validation of the insert and update statements... 236

10.1.1 Test Frame... 236
10.1.2 Multiple insertions... 236
10.1.3 Memory leak ... 237
10.1.4 Verification of the autonomics features .. 237
10.1.5 CDBVis ... 238

10.2 Use of CIC_DB_lib and its PVSS binding by the CALO subdetector 238
10.2.1 Inserting the connectivity in the CIC DB.. 239
10.2.2 Getting the connectivity between 2 devices .. 239
10.2.3 Verification of the execution time requirement .. 240

10.3 Inserting and querying the VELO connectivity ... 241
10.3.1 Using the connectivity for debugging purposes.. 241
10.3.2 Inserting the macroscopic and microscopic connectivity 241
10.3.3 Getting the connectivity between VELO devices ... 243

10.4 Simulation of device history .. 243
10.4.1 Introduction ... 243
10.4.2 Test patterns .. 243

10.5 Validating the connectivity information .. 244
10.6 Conclusion.. 245
References .. 246

Chapter 11 Other examples where the CIC DB can be implemented 248
11.1 Configuring telescopes... 248

11.1.1 VLT project ... 248
11.1.2 ALMA project ... 249
11.1.3 Use of the CIC DB in the VLT or ALMA project .. 251

11.2 Application of the model to the thin Gas Chamber of ATLAS 251
11.2.1 Description of the problem.. 251
11.2.2 ATLAS database design.. 252
11.2.3 Use of the CIC DB in ATLAS MUON Chamber database................................. 253

References .. 255
Conclusion.. 256
Appendices ... 260

 12

Appendix A Proof of the equivalence of a routing path .. 261
Appendix B The interface of the PL/SQL package, routingtable_pck 262
Appendix C Perl script to generate the dhcp config file .. 264
Appendix D Example of C code to exclude and include back host nodes......................... 273
Appendix E Perl script to generate the dns set of files... 277
Appendix F The API of the CIC_DB_lib (C code).. 288
Appendix G Example of a select query using OCI .. 297
Appendix H The PVSS CIC_DB_lib interface .. 299
Appendix I The CICDB class (for the Python CIC_DB_lib)... 309
Appendix J Example of dhcp config file.. 313
Appendix J Check that the number of paths for the Flow devices is correct 315
Appendix L Inserting the connectivity of the HCAL system... 316

Glossary.. 334

 13

 14

Table of Figures
Figure 1. Vue latérale du détecteur LHCb. .. 20
Figure 2. Architecture logicielle du système de contrôle PVSS. ... 21
Figure 3. Architecture 3 tiers pour la configuration de l'expérience LHCb. 24
Figure 4. Schéma des tables obtenu pour la modélisation de l'information relative à
l'inventaire. ... 26
Figure 5. Schéma des tables obtenu pour la représentation de la topologie des systèmes....... 26
Figure 6. Principe d'ajout d'un noeud dans un chemin... 29
Figure 7. Exemple de dispositif « autonomics » pour mettre à jour les fichiers de
configuration des serveurs DHCP et DNS, en utilisant PVSS et la LHCb CIC DB................ 30
Figure 8. Exemple d'un diagramme dessiné pour illustrer le cas d'usage "remplacer un
module". ... 31
Figure 9. Capture d'écran de CDBVis affichant les liens entrants et sortants du
DAQ_SWITCH_14 (un commutateur appartenant au réseau DAQ)....................................... 32
Figure 10. Exemple d'une interface graphique PVSS implémentée pour déterminer la
programmation du commutateur TFC. Les systèmes VELO_A et RICH1 ont été sélectionnés.
En utilisant les informations contenues dans la LHCb CIC DB, nous retrouvons les ports de
sortie du commutateur TFC qui devront envoyer des signaux aux deux systèmes sélectionnés.
.. 33
Figure 11. Topologie en forme de fleur qui avait été proposée pour implémenter le réseau
DAQ. .. 34
Figure 12. Topologie du réseau DAQ. ... 35
Figure 13. Extrait de la topologie du sous-détecteur VELO. La topologie des cartes "hybrid"
et des cartes répétiteurs doit être décrite dans la LHCb CIC DB. .. 36
Figure 14. Schéma des tables obtenu par le groupe des chambres du détecteur MUON chez
ATLAS. .. 38
Figure 15. Side view of the LHCb detector. .. 51
Figure 16. Example of CP violation: Kaon decays. ... 52
Figure 17. A typical p-p collision producing 2 types of B mesons. ... 53
Figure 18. From the detector to tape. ... 54
Figure 19. Overview of the DAQ system which includes the controls and data paths. 56
Figure 20. One TELL1 board on the left and 6 TELL1 boards on the right. 57
Figure 21. Overview of the MEP embedding. ... 57
Figure 22. Simplified schema of the TFC connectivity. .. 58
Figure 23. Example of internal connectivity. Inputs of the TFC switch are on the top whereas
the inputs of the Throttle switch are on the bottom.. 59
Figure 24. The ECS software architecture. .. 62
Figure 25. Example of a PVSS panel. .. 63
Figure 26. The LHCb experiment modeled as a tree. .. 64
Figure 27. States and transitions of the detector. ... 64
Figure 28. Very simplified LHCb RUN CONTROL PVSS panel... 66
Figure 29. Very Simplified view of the "Configure" command. ... 67
Figure 30. Very Simplified view of "Start the run". .. 68
Figure 31. Six HPD devices in the RICH subdetector. .. 73
Figure 32. A VELO R-sensor with the 16 beetles chips. ... 73
Figure 33. Simplified view of the HCAL connectivity. ... 75
Figure 34. An IP packet encapsulated in an Ethernet frame. ... 77
Figure 35.Illustration of the ARP protocol. The schema 1 shows station A which sends an
ARP request to all the stations to get the MAC address corresponding to the IP address

 15

“194.15.6.14”. The schema 2 shows that the station B answers to the station B because the
ARP request was for him. It has the IP address “194.15.6.14”. Shading means that the element
is not active... 78
Figure 36. An example of IP routing.. 79
Figure 37. An excerpt of the IP routing table of switch 1 (only the most important entries). . 80
Figure 38. Example of DHCP config file... 81
Figure 39. Principles of the DNS mechanism. ... 83
Figure 40. Handling the partition in the TFC system (first step). .. 87
Figure 41. The TFC internal connectivity (second step).. 87
Figure 42. Checking that the device is properly configured. ... 90
Figure 43. Example of internal connectivity. ... 90
Figure 44. An slice of the VELO connectivity, from a hybrid module to the TELL1 board. On
the right, there is the internal dataflow of the repeater board. ... 92
Figure 45. The internal connectivity of the feedthrough flange... 93
Figure 46. Software architecture. ... 96
Figure 47. The different users of the CIC DB.. 102
Figure 48. Diagrams showing entities, attributes and relationships....................................... 118
Figure 49. The drawing convention for one-to-one relationships. ... 118
Figure 50. One-to-many relationship. .. 119
Figure 51. Many-to-many relationship... 119
Figure 52. The DEVICE TYPE table. U stands for unique constraint................................... 119
Figure 53. The DEVICE TYPE table with its keys.. 120
Figure 54. Representation of the 1:N relationship in the RM. The dashed arrow indicates that
DEVICE.devicetypeID is a foreign key to DEVICE_TYPE.devicetypeID........................... 121
Figure 55. N:M relationship represented in the RM. The dashed arrow indicates that
SUBSYSTEM_DEVICE.DeviceID is a foreign key to DEVICE.deviceID.......................... 121
Figure 56. Table schema for the recipes .. 123
Figure 57. HARDWARE DEVICE model... 124
Figure 58. FUNCTIONAL DEVICE model. ... 124
Figure 59. FUNCTIONAL DEVICE TYPE model. .. 125
Figure 60. History model. .. 126
Figure 61. HARDWARE BOARD COMPONENT model. .. 126
Figure 62. FUNCTIONAL BOARD COMPONENT. ... 127
Figure 63. HISTORY COMPONENT representation.. 128
Figure 64. Table schema for the history and inventory data. ... 129
Figure 65. DEVICE BOOTING and DEVICE TYPE BOOTING models............................ 131
Figure 66. System table design. ... 133
Figure 67. Attribution of prime numbers to subsystems. The last case is not used in the
context of LHCb... 134
Figure 68. Example of 4 subsystems grouped by two... 138
Figure 69. Example of a representation of a tree of depth equal to 5 and with 15 leaves. 139
Figure 70. A tree of depth 1 with 2 leaves. .. 139
Figure 71. Building a tree of N+1 leaves from a tree with N leaves...................................... 140
Figure 72. HARDWARE PORT model. .. 142
Figure 73. FUNCTIONAL PORT model... 143
Figure 74. LINK TYPE model. .. 143
Figure 75. LINK model. ... 144
Figure 76. Connectivity table schema. ... 145
Figure 77. Board connectivity table schema. ... 146
Figure 78. Concept of host and intermediate nodes. .. 155

 16

Figure 79. Link weight concept.. 156
Figure 80. Example of a routing path... 156
Figure 81. Path modeling. ... 159
Figure 82. Generating the AGGREGATED_LINKS table using the CONNECTIVITY table.
.. 160
Figure 83. Concept of finding the paths. The path starting from Node 1 to Host Node i+2 is a
routing path. The other path ending at Node i+2 is still not finished, we go on if the i+3<M.
.. 163
Figure 84. Implementation principles. ... 172
Figure 85. Example of a topology where it is mandatory to exclude nodes. 173
Figure 86. An autonomic setup to update the dhcp config file using PVSS. 175
Figure 87. The principles of creating the DNS forwarding file. @ stands for address. 176
Figure 88. Implementation guidelines of the creating the dns reversing file. @ stands for
address. ... 177
Figure 89. Autonomics setup for the configuration of the DNS and DHCP servers further to a
change in the DAQ network setup. .. 178
Figure 90. Replacing a hardware device. ... 184
Figure 91. Setting the status of a hardware device to “IN_USE”, with no replacement........ 185
Figure 92. Changing the status of a hardware device from “IN_USE” to “TEST”, with
replacement. ... 185
Figure 93. Changing the status of a hardware device from “IN_USE” to “TEST”, with no
replacement. ... 186
Figure 94. Updating the status of a hardware device to “IN_USE”....................................... 186
Figure 95. First panel of the tool. ... 193
Figure 96. Browsing information via a hierarchy (left). Information about the device (right).
.. 194
Figure 97. Creating objects. On the top left, a panel to create device types and on the top right,
a panel to create devices. On the bottom left, a panel to create ports and on the bottom right a
panel to create link types and a panel to create links. .. 195
Figure 98. Neighbored connectivity for the TFC switch (ThorV1_00). 196
Figure 99. Neighbored connectivity for the switch DAQ_SWITCH_14............................... 197
Figure 100. Path mode view: get paths through DAQ_FLOW_00.. 198
Figure 101. A Path going through HCAL_DAC_06.. 199
Figure 102. The class model above shows the relations between the classes in the different
modules (shown as packages), and the member variables that are responsible for the
association/reference between the classes are shown... 200
Figure 103. First step: select the subsystems. .. 205
Figure 104. Result of the connectivity and suggest a free readout supervisor....................... 205
Figure 105. Select another readout supervisor, update the connectivity................................ 206
Figure 106. A PVSS panel to configure buses of a TELL1 board. .. 207
Figure 107. Downloading a FPGA code. ... 208
Figure 108. Possible configurable parameters. .. 209
Figure 109. Saving a recipe for OdinV2_00. ... 210
Figure 110. Loading an existing recipe for OdinV2_00. ... 211
Figure 111. Configuring the hardware. .. 211
Figure 112. Hardware configured. ... 212
Figure 113. First step: select a switch. ... 213
Figure 114. Loading the routing table. ... 214
Figure 115. Simplified overview of the TFC system. .. 218
Figure 116. Connectivity for the L0 electronics. ... 218

 17

Figure 117. Flower topology. ... 221
Figure 118. The foreseen topology of the DAQ. Links which are not arrow are bidirectional
links. ... 223
Figure 119. Impact of the number of links on the execution time. .. 229
Figure 120. Execution time to load a routing table from the CIC DB to PVSS. The output at
the top is from Windows, the one at the bottom, from Linux. ... 231
Figure 121. Principles of loading a routing table into a switch.. 232
Figure 122. Generating the dhcp config file from a cmd line. ... 233
Figure 123. Example of an incomplete connectivity for the VELO_REPEATER_BOARD_00.
.. 238
Figure 124. Example of relations between classes... 249
Figure 125. ALMA control system architecture. ... 250
Figure 126. Structure of the thin gas chambers.. 252
Figure 127. Design of ATLAS database. ... 253
Figure 128. Extract of the dhcp_file.xml. .. 313
Figure 129. Extract of the dhcp config file. ... 314

Abstract

 18

Abstract

Properly configuring an HEP (High Energy Physics) experiment becomes a more and more
complex task as the number of electronics modules grows and technologies evolve quickly.
Anticipating a fault in the software or in the hardware during the configuration or the data
taking requires an adaptive and modular control system.
The introduction of autonomic tools and databases in the HEP world is quite recent and
contributes to implement a more reliable system. The LHCb control system innovates as it has
been built using autonomic tools. The main contribution of this PhD is the implementation of
an autonomic 3-Tier architecture to configure the LHCb experiment which is a huge network
of devices of different types, and its integration in the control system. This new type of
autonomics architecture consists of:

• A database layer. A relational Oracle database implemented using the Oracle technology
contains the information required for configuration, namely about configuration
parameters, the connectivity of the experiment and the inventory/history of devices. A
method based on prime numbers has been introduced to replace a N:M relationship.
PL/SQL applications have been built to automate several steps in the configuration.

• An object layer. A set of smart libraries has been written to allow manipulating the
information stored in the database in a safe and consistent manner and without any
knowledge of the database table schema.

• A GUI layer. Users view and modify the content of the database using user-friendly
graphical interfaces.

Each layer has been tested and validated. The behaviour of the whole architecture and its
integration in the control system have also been tested successfully.

Keywords: autonomic, configuration, equipment management, graph, networking, prime
numbers, relational database, SCADA system.

Résumé

 19

Résumé

Configurer une expérience PHE (Physique des Hautes Energies) devient de plus en plus
complexe : le nombre de modules augmente et de nouvelles technologies sont utilisées.
Anticiper les fautes d’un software ou d’un hardware nécessite un système de contrôle robuste.

Les systèmes autonomes et dynamiques ont été introduits récemment dans le monde PHE afin
d’améliorer la robustesse des expériences. L’architecture du système de contrôle de LHCb qui
intègre des outils autonomes et dynamiques (autonomique) constitue une innovation. La
contribution de cette thèse est l’implémentation d’une architecture 3 tiers « autonomic »
permettant de configurer l’expérience LHCb, i.e. un gigantesque réseau d’équipement. Ce
nouveau type d’architecture « autonomic » comprend :

• une couche accès aux données. Une base de données relationnelle Oracle contient des
informations sur les paramètres de configuration, sur la topologie de l’expérience et
l’inventaire des modules. Une méthode utilisant les nombres premiers est présentée pour
remplacer une relation N:M. Des applications PL/SQL ont été implémentées pour
automatiser certaines étapes de la configuration.

• une couche traitement des données. Des librairies de fonctions intelligentes permettent de
manipuler les informations contenues dans la base de données de manière sûre et
cohérente et sans connaissance préalable de la structure de la base de données.

• une couche présentation des données. Des interfaces graphiques permettent de modifier et
de visualiser les informations stockées.

Chaque couche a été testée et validée. Le fonctionnement de l’architecture globale et son
intégration dans le système de contrôle ont été validés avec succès.

Mots clés : autonomique, bases de données, configuration de réseaux, gestion d’équipement,
graphe, PHE, modèle relationnel, nombres premiers, tables de routage, topologie des
systèmes.

Résumé par chapitre de la thèse (en français)

 20

Résumé par chapitre de la thèse (en français)

Chapitre 1 Introduction à l’expérience LHCb

Les expériences PHE étudient les particules élémentaires (les photons, électrons, etc.)
et leurs interactions. Elles tentent de répondre à des questions fondamentales telles
que l’origine de la masse, l’origine de l’Univers.
L’expérience LHCb a pour but d’étudier la violation CP (charge parité) sur les
particules B-mésons. Le détecteur LHCb (voir Figure 1) est composé de plusieurs
sous détecteurs (VELO, PUS, RICH, Silicon Trackers, Outer Trackers, Calorimètres,
et un détecteur à muons). Un gigantesque aimant permet de faire courber la trajectoire
des particules.

Figure 1. Vue latérale du détecteur LHCb.

Outre le détecteur, l’expérience comprend un système dit « Online », composé de
quatre éléments :

• Le Trigger. Les collisions ont lieu toutes les 25ns. Elles sont détectées par des
capteurs situés sur le détecteur et produisent des signaux arrivant donc à une
fréquence de 40 MHz. Ce qui représente une importante quantité de données! Il
est donc nécessaire de filtrer ces signaux. C’est le travail du Trigger, qui dans le
cas du détecteur LHCb comprend deux niveaux. Le premier niveau (L0 Trigger)
s’appuie sur du hardware. Les données sont ainsi réduites à la fréquence de 1
MHz. Le deuxième niveau (HLT) est de nature logicielle et réduit la fréquence
des données à quelques kHZ.

• Le DAQ (système d’acquisition des données) est un réseau Gigabit Ethernet qui
permet le transfert et le routage des données provenant du détecteur au stockage
permanent, en passant par les PCs de la ferme (c’est sur ces PCs que tournent le
HLT et donc que la sélection des évènements les plus importants se fait).

• Le TFC (système de synchronisation) a pour charge de synchroniser tous les
modules et de transmettre la décision du L0 Trigger aux modules du détecteur. Si

Résumé par chapitre de la thèse (en français)

 21

la décision du L0 trigger est positive, les données relatives à cet événement
continuent leur transition vers le système d’acquisition des données.

• Le ECS (système de contrôle) a la responsabilité de piloter le détecteur. Cette
tâche comprend la configuration et la supervision du détecteur, des systèmes TFC
et DAQ. Le système de contrôle LHCb (voir Figure 2) repose sur PVSS, un
système SCADA. Tous les modules contrôlables (environ 500,000) de
l’expérience doivent être représentés dans PVSS. La modélisation des états du
détecteur (et par conséquent de ses différents éléments) se fait grâce à une
machine à états (FSM). La communication entre PVSS et le hardware s’appuie
sur DIM. Les informations concernant la configuration sont stockées dans une
base de données Oracle, la LHCb CIC DB. Cette dernière contient toutes les
informations liées aux paramètres de configuration des différents modules, à la
topologie des sous-systèmes (comment les modules sont-ils connectés ?) et à
l’inventaire/historique du hardware. Il est donc important que le système de
contrôle s’appuie sur des outils « autonomics » pour configurer et superviser
l’expérience étant donné la grande quantité de modules à configurer et le nombre
de tâches à exécuter.

Figure 2. Architecture logicielle du système de contrôle PVSS.

Une fois le détecteur construit et le système Online fonctionnel, les expériences de
physique peuvent débuter. Pour ce faire, chaque expérience physique se caractérise
par un mode et une partition. Un mode correspond à définir la configuration du
détecteur, selon ce que l’on veut mesurer. Par exemple, le mode PHYSICS est un
mode destiné à tout mesurer (énergie, moment et traces de tous types de particules de
type B mésons), alors que le mode COSMICS est utilisé pour mesurer le bruit (rayons
cosmiques). La partition quant à elle, consiste à définir quelles parties du détecteur
vont participer à l’acquisition des données. Ce concept est très important car il permet
de faire tourner plusieurs parties du détecteur en parallèle avec des configurations

Résumé par chapitre de la thèse (en français)

 22

différentes. Cela facilite aussi le débogage des sous-systèmes. Faire tourner le
détecteur pour acquérir des données s’appelle un run dans le jargon PHE. En général,
un run dure quelques heures.
Jusqu'à présent, nous avons décrit les systèmes qui permettent d’acquérir, de
sélectionner et de stocker les données les plus intéressantes.
Ces données ainsi sauvegardées sur cassettes vont faire l’objet d’analyses et de
reconstructions des interactions. C’est le système Offline qui en a la charge. Ce
système inclut aussi les simulations de données afin de valider les algorithmes de
reconstruction et d’analyse. Ce système fait grand usage des grilles de calcul pour la
reconstruction des événements et autres études physiques impliquant des opérations
complexes et coûteuses.

Chapitre 2 Configurer l’expérience LHCb

L’expérience LHCb comprend différents types de modules dont la quantité varie d’un
sous-système à l’autre. Il y a environ 500,000 modules à configurer et la quantité
d’informations nécessaires pour les configurer peut aller de quelques kB à quelques
MB.
Qui plus est, la configuration des paramètres de certains modules (coefficient de
calibrations par exemple) nécessite une connaissance de la topologie du sous-
détecteur telle que déterminer quelle LED illumine quelle cellule dans le détecteur
HCAL. Ainsi les informations relevant des paramètres de configuration et de la
topologie peuvent être combinées pour configurer un sous-système.
Outre les éléments du détecteur, le réseau du DAQ et ses centaines de routeurs
doivent aussi être configurés. Cela implique notamment la création de tables de
routage (IP), la configuration des fichiers des serveurs DHCP et DNS.
Le commutateur central du système TFC doit lui aussi être programmé en fonction de
la partition choisie.
Décrire la topologie du système permet aussi de tester les liens et de détecter les
erreurs lors de transmission de signaux entre deux modules. La description peut se
faire entre les modules ou bien entre les composants de modules. Il y a donc deux
niveaux de topologie : celui qui décrit les liens entre les modules, dit macroscopique
et celui qui décrit la topologie du module lui-même dit microscopique.
De plus, comme la durée de vie du détecteur est longue (environ 10-15 ans), il y a fort
à parier que certains éléments vont se dégrader au bout d’un certain temps,
notamment pour les modules situés dans la zone de radiation. Ces derniers vont devoir
être remplacés. Il est donc essentiel de savoir quels sont les modules à remplacer, les
modules en réserve selon leur type et autres informations liées à la gestion du
matériel.
Configurer les éléments est une étape, mais s’assurer que la configuration s’est bien
déroulée en est une autre. La stratégie appliquée au sein de l’expérience LHCb est la
vérification systématique des valeurs des paramètres de configuration telles qu’elles
sont lues dans le hardware. Ensuite ces valeurs sont comparées à celles qui ont été
écrites. La configuration s’est bien passée s’il y a concordance entre les valeurs, sinon
l’expérience passe à l’état « ERROR ».
Toutes les informations qui sont donc nécessaires à la configuration de l’expérience
doivent être stockées dans la LHCb CIC DB.

Résumé par chapitre de la thèse (en français)

 23

Il est inenvisageable d’accomplir les différentes tâches de configuration
manuellement. D’une part, la quantité de travail serait énorme et fastidieuse, d’autre
part, il y a de fortes chances que des erreurs d’inadvertance soient commises. Par
conséquent, il est nécessaire que des outils autonomes et dynamiques (autonomiques)
soient implémentés (là où cela est possible) et intégrés à l’architecture logicielle du
système.

Chapitre 3 L’architecture logicielle

L’architecture implémentée pour permettre la configuration de l’expérience est une
architecture 3 tiers (voir Figure 3). Les 3 couches sont les suivantes:

• La couche base de données permet de stocker de façon persistante les
informations relatives aux paramètres de configuration, à la topologie des sous-
systèmes et à l’inventaire des modules. Toutes ces informations sont dans la
LHCb CIC DB, une base de données Oracle relationnelle. Le schéma de la LHCb
CIC DB joue un rôle très important et se doit d’être complet afin de répondre aux
besoins des utilisateurs. Des applications PL/SQL ont aussi été implémentées
pour faciliter certaines mises à jour des données et pour éviter d’encapsuler de
longues requêtes SQL.

• La couche traitement des données (couche objet) fait le lien entre les couches.
Elle est composée d’une librairie PVSS qui permet de sauvegarder et de
télécharger des paramètres de configuration. Deux scripts en Perl ont été
implémentés afin de créer les fichiers de configuration des serveurs DHCP et
DNS. Enfin une librairie en C, CIC_DB_lib a été écrite afin que des utilisateurs
non experts en bases de données puissent manipuler de façon consistante et sûre,
les informations liées à la topologie des sous-systèmes et à l’inventaire. Cette
librairie inclut deux extensions, une en Python et une en PVSS.

• La couche présentation des données repose sur des interfaces graphiques PVSS et
sur CDBVis, un outil en Python qui permet la visualisation de la topologie des
systèmes et autres informations. Cet outil est très utile pour détecter les erreurs
liées à la topologie. Tous ces panneaux utilisent ou la librairie en PVSS pour les
paramètres de configuration ou la CIC_DB_lib (extensions incluses) pour
communiquer avec la LHCb CIC DB. C’est cette couche qui permet l’intégration
dans le système de contrôle LHCb via les panneaux PVSS.

Résumé par chapitre de la thèse (en français)

 24

Figure 3. Architecture 3 tiers pour la configuration de l'expérience LHCb.

Cette architecture inclut autant que faire ce peu des outils « autonomics », notamment
pour la création de tables de routage et destination et pour une mise à jour cohérente
des informations relatives à l’inventaire. Tous les outils ont été conçus de manière à
minimiser l’intervention humaine et à être robuste face à de mauvaises manipulations
des données.

Chapitre 4 Besoins et cas d’usages

La méthodologie adoptée pour implémenter l’architecture 3 tiers est la suivante :

• Identification des utilisateurs de la LHCb CIC DB (sous détecteurs, DAQ, TFC et
ECS) ;

• Liste des besoins (par rapport aux groupes d’utilisateurs, à l’intégration dans ECS,
aux interfaces graphiques et à la sécurité) ;

• Liste des cas d’usages répartis par type d’information (paramètres de
configuration, topologie des systèmes et inventaire/historique). Chaque groupe
d’utilisateur nous a fait part de ses différents cas d’usages ;

• Assimiler l’environnement LHCb afin de mieux comprendre les cas d’usage et
leurs implications ;

• Concevoir le schéma de la LHCb CIC DB ;
• Implémenter les outils qui permettent d’interagir avec la LHCb CIC DB et les

intégrer dans le système de contrôle ;
Des besoins ont été émis par rapport au schéma des tables. Ce dernier doit être
complet et consistant. Il doit aussi assurer une bonne performance. Au démarrage, le
chargement d’une configuration de toute l’expérience (de la LHCb CIC DB vers le
hardware) doit s’effectuer entre 5 et 10 minutes. Le schéma doit être extensible afin
de pouvoir être réutilisé pour d’autres expériences futures. Enfin et non des moindres,

Résumé par chapitre de la thèse (en français)

 25

le schéma doit être générique, en d’autres termes il doit pouvoir s’appliquer à
n’importe quel sous-système.
En ce qui concerne les besoins par rapport aux outils, un des aspects essentiels est
l’obligation d’implémenter des outils qui ne requiert aucune connaissance du schéma
des tables et du langage SQL. De plus, il doit être possible de manipuler et d’insérer
n’importe quel type d’information contenue dans la LHCb CIC DB depuis PVSS. Une
API complète a donc dû être définie en s’appuyant sur les cas d’usages. Un outil de
visualisation doit être implémenté pour vérifier la topologie des systèmes qui a été
insérée dans la LHCb CIC DB. Le maximum d’outils doit être « autonomics » afin de
réduire la probabilité d’erreur et le nombre de tâches fastidieuses à exécuter.
Les cas d’usages ont été définis au travers de plusieurs réunions avec les différents
groupes d’utilisateurs de la LHCb CIC DB. Ils ont permis de concevoir le schéma des
tables et l’API pour les librairies PVSS (paramètres de configuration) et CIC_DB_lib.

Chapitre 5 Le schéma des tables de la LHCb CIC DB

Le schéma des tables a été conçu en utilisant le modèle relationnel. Chaque cas
d’usage a été repris et analysé. Les entités, leurs attributs ainsi que les relations ont pu
être définis.
Le choix du modèle relationnel s’explique avant tout par le fait qu’il répondait aux
besoins de l’expérience et qu’un autre modèle tel que le modèle objet n’aurait fait
qu’augmenter la complexité du schéma sans apporter aucun gain.
Lors de l’analyse des cas d’usage, deux niveaux de vue ont dû être distingués, le
niveau hardware et le niveau fonctionnel. Autrement dit, la carte qui porte le numéro
de série XDHFFD41 (hardware) accomplit les tâches de MUON_TELL1_12
(fonctionnel). Si MUON_TELL1_12 a un problème, la carte du point de vue élément
physique sera remplacée. Et donc par la suite, c’est une carte qui porte le numéro de
série GT54RVSS, par exemple, qui accomplira les tâches de MUON_TELL1_12. Le
nom fonctionnel reste inchangé au cours du temps.
La Figure 4 montre le schéma des tables obtenu pour la modélisation des informations
de l’inventaire et de l’historique. Les tables FUNCTIONAL_DEVICES et
HARDWARE_DEVICES contiennent respectivement les informations fonctionnelles
d’un module et les informations hardware d’un module. Sur le même principe, les
tables FUNCTIONAL_COMPONENTS et HARDWARE_ COMPONENTS
contiennent respectivement les informations fonctionnelles d’un composant d’un
module et les informations hardware d’un composant d’un module.

Résumé par chapitre de la thèse (en français)

 26

Figure 4. Schéma des tables obtenu pour la modélisation de l'information relative à l'inventaire.

Figure 5. Schéma des tables obtenu pour la représentation de la topologie des systèmes.

Résumé par chapitre de la thèse (en français)

 27

Un autre aspect qui a été traité dans ce chapitre est une méthode qui permet de
modéliser une relation M:N où une des deux entités ne peut avoir au plus que
2.30*1034 valeurs possibles, en utilisant des nombres premiers. Ainsi cette méthode
évite la création d’une autre table. Le principe de cette méthode est d’attribuer un
nombre premier à l’entité qui a le moins de valeurs possibles (appelons cette entité X
et l’autre Y), en guise d’identifiant (clé primaire). Ensuite nous ajoutons un attribut à
Y qui va modéliser la relation M:N en lui affectant le produit des identifiants de X
(avec qui Y a une relation). Considérons les entités « employé » et « projet ».
Supposons qu’il y ait au plus 50 projets en cours. L’entité « projet » est définie par un
ID et un nom. L’entité « employé » est définie par un ID et un nom. Comme l’entité
« projet » a le moins de tuples, nous affectons à chacun des ID un nombre premier (2
pour le projet Data Management, 3 pour le projet STAR_PHONE, 5 pour le projet
JAVA_3D, etc.) Ensuite, nous ajoutons un attribut part_project à l’entité « employé ».
Si par exemple, un employé travaille à la fois sur le projet Data Management et sur le
projet STAR_PHONE, l’attribut part_project de cet employé vaudra 5*2=10. Et
inversement, grâce à la décomposition unique d’un nombre en nombres premiers,
nous retrouvons que si l’attribut part_project d’un employé vaut 10, cela veut dire
qu’il travaille sur STAR_PHONE car mod(10, 5)=0 et sur Data Management car
mod(10,2)=0. (mod correspond à l’opérateur modulo).
Cette méthode a été appliquée pour la relation N :M entre FUNCTIONAL_DEVICES
et SUBSYSTEMS, pour celle entre FUNCTIONAL_DEVICES et FUNCTIONS et
enfin pour celle entre CONNECTIVITY et LINK_TYPE, en se référant à la Figure 4
et à la Figure 5.
En reprenant les cas d’usages, nous avons pu vérifier que le schéma des tables était
complet.

Chapitre 6 Création automatique de tables de routage et de
destination avec PL/SQL

Outre le schéma des tables, la couche accès aux données comprend des applications
PL/SQL. L’une d’entre elles (routingtable_pck) permet la création et la mise à jour
automatique des tables de routage et de destination.
Ces deux types de table permettent de déterminer le chemin à prendre en fonction de
la destination. Il a fallu définir la notion de destination. Certains modules ne peuvent
pas être des destinations. Un commutateur par exemple ne peut jamais être une
destination puisqu’il ne peut pas recevoir de paquets qui lui soient adressés. Par
contre, un PC de la ferme ou une carte de type TELL1 sont des destinations parce
qu’ils peuvent envoyer ou recevoir des paquets.
Ainsi nous modélisons la topologie d’un système à l’aide de deux types de nœuds, des
nœuds intermédiaires et des nœuds terminaux. Par définition, un chemin est une
succession de noeuds. Un chemin de routage est une succession de nœuds où le seul
nœud terminal prend la dernière position dans la séquence. Il est à noter qu’une table
de routage est toujours créée pour un commutateur ou un routeur, i.e. des nœuds
intermédiaires. Et, donc un chemin de routage commence toujours par un nœud
intermédiaire (un commutateur ou un routeur).
Afin de faciliter la recherche de chemins de routage, un système de poids est appliqué
aux nœuds (0 si c’est un nœud intermédiaire, 1 si c’est un nœud terminal) ainsi qu’aux
liens (0 si c’est entre deux nœuds intermédiaires, 1 si c’est entre un nœud terminal et

Résumé par chapitre de la thèse (en français)

 28

un nœud intermédiaire, 2 si c’est entre un nœud intermédiaire et un nœud terminal, 3
si c’est entre deux nœuds terminaux).
En outre, étant donné que trouver tous les chemins est un problème NP complet, nous
introduisons un paramètre M, caractéristique de la longueur maximale d’un chemin en
fonction de la topologie du système. Dans le contexte LHCb, les topologies sont telles
que ce paramètre a permis de réduire la complexité du problème. Ce paramètre est
défini par l’utilisateur. Par défaut, il est égal à 10 (dans le contexte LHCb, les chemins
trouvés avaient une longueur inférieure ou égale à 10).
Ainsi un chemin de longueur J est un chemin de routage de longueur J si et seulement
la somme des poids des J-1 liens vaut 0 et la somme des poids des J liens vaut 2.
Autrement dit, tous les poids des liens du chemin valent 0 sauf le dernier lien du
chemin qui vaut 2.
En utilisant cette formule, nous avons développé l’algorithme dont les étapes sont
détaillées ci-après. Les paramètres d’entrée sont le nom du routeur et la longueur
maximale d’un chemin (M), qui est optionnel.

1. Création d’une vue logique de la topologie du réseau, où les nœuds du graphe
ne sont plus un couple (module, port) mais seulement le nom du module.
Ainsi, s’il y a trois liens entre les modules A et B, dans cette vue simplifiée,
nous considérons que le fait qu’il existe un lien entre le module A et le module
B. En outre, un lien bidirectionnel est représenté en tant que deux liens
unidirectionnels. Par exemple s’il existe un lien bidirectionnel entre les
modules A et B, nous considérons ce cas de figure, dans cette représentation,
comme un lien partant du module A vers B et un autre lien du module B vers
le module B.

2. Ensuite, nous regroupons par paire les liens obtenus dans cette vue simplifiée
et vérifiant 4 conditions. A titre de remarque, une paire de liens comporte 3
nœuds et a une longueur de deux. Une paire de liens est donc validée, si

a. le deuxième nœud du premier lien correspond au premier lien du
deuxième lien, condition qui va de soi pour assurer l’enchaînement ;

b. le premier nœud est différent du troisième nœud afin d’éviter les
cycles ;

c. le poids du premier lien ne vaut pas deux ;
d. les deux liens transportent des types de données compatibles. Un lien

qui transporte des données relatives à des événements n’est pas
compatible avec des données relatives au contrôle.

3. Puis, tous les liens qui ont un poids égal à deux et qui commencent par le
routeur donné en paramètre d’entrée sont sélectionnés. Ainsi nous trouvons
tous les chemins qui ont une longueur de 1.

4. Une boucle « while » (voir Figure 6) portant sur la longueur du chemin i est
exécutée. La condition d’arrêt est soit la longueur du chemin dépasse M, soit
tous les chemins ont été trouvés. Elle inclut l’exécution des instructions
suivantes :

a. Ajout d’un nœud compatible aux chemins précédemment trouvés
(vérification qu’il n’y a pas de cycles et que le type de données est
compatible) ;

b. Le poids du chemin et le type de données que peut transporter le
chemin sont remis à jour. S’il existe un chemin dont le poids vaut 0,
nous continuons, sinon nous stoppons la boucle.

Résumé par chapitre de la thèse (en français)

 29

A chaque itération i, nous trouvons les chemins de routage de longueur i.
5. A ce niveau, nous avons trouvé tous les chemins de routage. Il nous faut

revenir au concept de port. Nous sélectionnons le chemin le plus court (un flag
est mis à 1 signifiant que c’est ce chemin qui a été choisi) et faisons la
correspondance avec les identifiants de ports afin de retrouver par la suite les
adresses IP et MAC.

6. Nous insérons la table de routage ainsi obtenue dans la table (table au sens
base de données).

Figure 6. Principe d'ajout d'un noeud dans un chemin.

Par une démonstration par l’absurde, nous prouvons que notre algorithme trouve bien
tous les chemins de longueur<=M.
Les tables de destination utilisent le même principe. La différence réside dans le fait
que les tables de destination peuvent être créées pour un nœud terminal (ce qui n’est
pas le cas pour des tables de routage) et que nous ne sélectionnons pas les plus courts
chemins (étape inutile).
Cet algorithme a été déployé sous forme d’un paquetage PL/SQL, langage qui est
spécifique aux bases de données Oracle. L’avantage de ce langage est qu’il est
exécuté du côté serveur et qu’il peut être encapsulé dans n’importe quel autre langage
(C, Perl, Python, java, etc.). Cela évite le transfert de longues lignes de requêtes SQL
à travers le réseau.
Cependant une version en C de cet algorithme a aussi été écrite. Elle est utilisée pour
répondre aux questions du type, donner tous les chemins entre un module A et un
module B, ou de façon plus générale, donner tous les chemins appartenant à tel
système, et passant par le module A. Nous avons préféré exécuter ce code du côté
client étant donné que les requêtes sont dynamiques, ce qui n’est pas le cas des tables

Résumé par chapitre de la thèse (en français)

 30

de routage devant être créées pour tous les routeurs du système DAQ, et des tables de
destination devant être créées pour le commutateur TFC et pour tous les serveurs
DHCP du system DAQ.
Les tables de destination sont utilisées pour le commutateur TFC et pour les serveurs
DHCP.
Avec ce paquetage PL/SQL, des applications « autonomics » peuvent être
implémentées afin d’éviter à l’utilisateur une programmation manuelle des centaines
de tables de routage et des mises à jour en cas de modifications dans le réseau, telle
qu’un ajout de PC ou une panne d’un routeur.

Chapitre 7 La couche traitement des données

Cette couche comprend divers types de librairies qui ont été écrits pour interagir avec
la LHCb CIC DB. Ils ont été implémentés dans l’optique de faciliter le déploiement
d’outils « autonomics » qui utilisent ces librairies:

• Deux scripts Perl permettent la création automatique de fichiers de configuration
pour les serveurs DHCP et DNS. Pour mettre au point le fichier de configuration
du serveur DHCP, sa table de destination est d’abord créée afin de déterminer les
éléments qui seront configurées par ce dernier. Ensuite pour chacune des
destinations, nous retrouvons son adresse IP et MAC, son nom IP et enfin son
fichier pour démarrer (contenant sa configuration). Les résultats des requêtes SQL
sont encapsulés dans XML. Le deuxième script Perl créée les fichiers de
configuration pour le serveur DNS (correspondance entre adresses IP et noms IP).
XML est aussi utilisé pour encapsuler les résultats des requêtes SQL. Nous
montrons un exemple de dispositif « autonomics » utilisant PVSS qui permet de
mettre à jour les fichiers de configuration des serveurs DHCP et DNS suite à une
modification du réseau (voir Figure 7).

Figure 7. Exemple de dispositif « autonomics » pour mettre à jour les fichiers de configuration
des serveurs DHCP et DNS, en utilisant PVSS et la LHCb CIC DB.

Résumé par chapitre de la thèse (en français)

 31

• Une librairie en C, CIC_DB_lib qui permet d’insérer, de mettre à jour, d’effacer
et de retrouver des informations relatives à la topologie des sous-systèmes et à
l’inventaire. OCI est utilisé en tant qu’interface DB. Pour assurer la consistance
des données en matière d’inventaire, des diagrammes de cas d’usage (un exemple
est montré par la Figure 8) ont été conçus. Ils ont permis notamment de définir les
mises à jour nécessaires à la suite de chaque changement de statut d’un module.
Deux extensions ont été écrites une en Python (via BOOST) et une en PVSS (via
GEH). Une API a été créée afin de déterminer la liste des fonctions requises par
les utilisateurs pour interagir avec la LHCb CIC DB. Cette API a été développée
en utilisant les cas d’usage définis au chapitre 4. Ainsi CIC_DB_lib fournit toutes
les fonctions nécessaires à l’utilisateur pour retrouver, insérer ou modifier les
données de manière sûre et cohérente. CIC_DB_lib a été écrite dans l’optique de
faciliter la mise en place d’outils « autonomics » qui l’utilisent, en réduisant les
interventions humaines. Si nous pouvons déterminer à l’avance les conséquences
d’une telle modification, nous l’implémentons directement sans demander à
l’utilisateur de le faire. C’est le cas par exemple de mettre un commutateur h en
mode inactif. Tous les liens de ce dernier seront automatiquement mis en mode
inactif. De même pour les chemins de routages.

Figure 8. Exemple d'un diagramme dessiné pour illustrer le cas d'usage "remplacer un module".

• Une librairie en PVSS permet de sauvegarder et de télécharger des configurations,
aussi appelées recettes. L’utilisateur définit les paramètres de configuration avec
leurs valeurs et ce pour une liste de modules. L’ensemble (liste de modules,
paramètres et valeurs de configuration par type de module) constitue une recette.
Il est possible d’avoir plusieurs versions d’une même recette.

Résumé par chapitre de la thèse (en français)

 32

Chapitre 8 Structure de la couche présentation des données

Plusieurs interfaces graphiques ont été implémentées afin de rendre les données
visibles.
• CDBVis est un outil Python qui permet d’insérer la topologie d’un sous-système

et de la visualiser afin de vérifier qu’il n’y a pas d’erreur. Un exemple de capture
d’écran est donné par la Figure 9. PVSS n’a pas pu être utilisé car c’est un outil
inadéquat pour afficher des liens entre modules. Toutes les requêtes vers la LHCb
CIC DB s’appuient sur l’extension Python de CIC_DB_lib.

Figure 9. Capture d'écran de CDBVis affichant les liens entrants et sortants du
DAQ_SWITCH_14 (un commutateur appartenant au réseau DAQ).

• Les fichiers de configuration pour les serveurs DNS et DHCP ont été créés à
partir des fichiers XML en utilisant XSLT. Cela permet si besoin de convertir les
fichiers XML en d’autres formats de fichiers tels que HTML.

• Des interfaces graphiques PVSS définies par l’utilisateur permettent de
sauvegarder et de télécharger des recettes pour un module ou un groupe de
modules, de superviser les modules. Elles permettent aussi télécharger et de
visualiser des tables de routage pour un commutateur, d’obtenir des informations
sur la topologie des systèmes pour la configuration de certains paramètres et de
programmer le commutateur TFC en fonction de la partition choisie (voir Figure
10). Toutes les interfaces graphiques PVSS utilisent ou la librairie PVSS pour les
recettes ou l’extension PVSS de CIC_DB_lib pour communiquer avec la LHCb
CIC DB. Il est aussi important de noter que dans les interfaces graphiques PVSS,

Résumé par chapitre de la thèse (en français)

 33

les informations sur les paramètres de configuration, sur la topologie des systèmes
et sur l’inventaire/historique sont combinées afin de permettre un meilleur
automatisme des actions.

Figure 10. Exemple d'une interface graphique PVSS implémentée pour déterminer la
programmation du commutateur TFC. Les systèmes VELO_A et RICH1 ont été sélectionnés. En
utilisant les informations contenues dans la LHCb CIC DB, nous retrouvons les ports de sortie
du commutateur TFC qui devront envoyer des signaux aux deux systèmes sélectionnés.

Chapitre 9 Validation des algorithmes de routage et de
destination

Routingtable_pck, le paquetage PL/SQL qui permet entre autres de créer les tables
de routage, a été appliqué sur différentes topologies de systèmes (incluant des cycles)
afin d’en tester la robustesse.
Le temps d’exécution de l’algorithme dépend de la complexité de la topologie,
notamment au niveau nombre de liens et de la longueur maximale du chemin.
Ainsi la table de destination du commutateur TFC est créée en 1mn 15 sec, en
moyenne et 36000 chemins sont trouvés. La table de routage d’un routeur type Flow
(voir Figure 5) est créée en 11 sec pour 5542 chemins et celle du DAQ_ROUTER_1,
en 13 sec 45 pour 20016 chemins.

Résumé par chapitre de la thèse (en français)

 34

Figure 11. Topologie en forme de fleur qui avait été proposée pour implémenter le réseau DAQ.

Résumé par chapitre de la thèse (en français)

 35

Figure 12. Topologie du réseau DAQ.

Ensuite, nous avons aussi programmé la table de routage dans le routeur. Tout
d’abord la table a été téléchargée de la LHCb CIC DB vers PVSS, puis de PVSS vers
le routeur en utilisant DIM (version légère de CORBA) et des sockets.
L’application permettant de créer le fichier de configuration du serveur DHCP a été
testée en copiant le fichier « dhcpd.conf » sur un véritable serveur DHCP. Le fichier a
été accepté et compris par le serveur DHCP.

Chapitre 10 Validation de CIC_DB_lib

Différents tests ont été appliqués à la librairie, en mettant l’accent sur les points
suivants :

• les fonctions ainsi que leurs extensions faisaient bien ce qu’elles devaient faire ;
• le comportement des fonctions d’insertion, de mises à jour et de délétion en cas de

mauvaise utilisation (erreur ou violation de certaines contraintes) ;
• le comportement de certaines fonctions (insertion et mise a jour) lorsqu’elles sont

exécutées de façon concurrentielle ;
• Les mises à jour automatiques des tables de routage et de destination stockées

dans la LHCb CIC DB.
Cette librairie a été utilisée pour insérer la topologie du sous-détecteur HCAL,
comprenant environ 14 000 liens et 6231 modules.

Résumé par chapitre de la thèse (en français)

 36

Les chercheurs du groupe HCAL ont essentiellement fait des requêtes du type, donner
tous les chemins entre une carte DAC et les modules de type « Channel ». Ils ont
utilisé la version C pour l’insertion et l’extension PVSS pour faire les requêtes de
chemins.
Le groupe VELO a, lui aussi, inséré une partie de sa topologie, contenant quelques
topologies internes de certaines cartes (module « hybrid » par exemple). La Figure 13
montre une petite partie (10%) de la topologie du sous-détecteur VELO. Outre la
topologie entre les modules, celle des cartes « hybrid » et des cartes répétiteurs
doivent être aussi décrites dans la LHCb CIC DB.

Figure 13. Extrait de la topologie du sous-détecteur VELO. La topologie des cartes "hybrid" et
des cartes répétiteurs doit être décrite dans la LHCb CIC DB.

Résumé par chapitre de la thèse (en français)

 37

Grâce à ce système, nous avons pu tester les fonctions relatives aux informations
microscopiques (liens et modules internes). L’outil CDBVis et l’extension Python de
CIC_DB_lib ont été utilisés pour insérer une partie de la connectivité des chambres
du système MUON.
Tous les tests ont été menés avec succès.

Chapitre 11 Autres domaines où la LHCb CIC DB peut être
utilisée

Ce chapitre a pour but de présenter d’autres domaines où la base de données LHCb
CIC DB peut être utilisée. Il s’agit des grands télescopes et de l’expérience des
chambres de muons chez ATLAS.
Les grands télescopes doivent aussi être configurés. Nous allons brièvement présenter
deux projets VLT (Very Large Project) et ALMA (Atacama Large Millimeter Array).
Dans les deux projets, le groupe ESO a déployé son propre DBMS afin de configurer
leur matériel.
Le VLT est constitué de 4 télescopes identiques ayant chacun un diamètre de 8 m. Ils
peuvent être utilisés indépendamment ou en tant qu’un seul instrument. Les logiciels
de contrôle reposent sur des terminaux et des microprocesseurs utilisant les systèmes
VME. Des unités de contrôle locales supervisent une partie de l’équipement. Le VLT
comprend une base de donnée qui fournit des données en temps réel et a été implantée
par le groupe ; à l’époque, les temps d’écriture dans une base de données étaient bien
inférieurs à leurs besoins. Cette base de donnée peut être assimilée à un ensemble de
fichiers.
Chaque unité de contrôle télécharge les informations relatives à la configuration du
matériel supervisé. Il n’y a pas d’information liée à la topologie des systèmes car elle
est triviale dans leur cas. La base de donnée est orientée objet avec beaucoup de
classes telles que moteurs, encodeurs, etc. La description d’un télescope nécessite
6400 instances, soit 6400 entrées dans la base de données.
Le projet ALMA, lui, est composé de 64 télescopes de 12 m de diamètre. Ils ont
déployé un environnement d’application, ACS qui utilise CORBA. ALMA contient
une impressionnante liste d’équipements et de logiciels. La configuration des
télescopes change en fonction du temps. Si une antenne ne fonctionne plus, le système
doit être reconfiguré. La description détaillée des télescopes est sauvegardée dans une
base de données. Cette dernière est utilisée, au démarrage, pour déterminer les
modules qui sont en ligne. En effet, les modules (antennes par ex.), dès qu’ils sont
allumés, doivent le signaler à la base de données. La base de données compare la liste
des modules en ligne avec celle qu’elle a. S’il y a un problème de correspondance, le
nouveau module en ligne est ajouté. Ils utilisent donc des outils « autonomics ».
En outre, contrairement au projet précédent, l’historique des modules est stocké. Cette
information est stockée dans une autre base de données relationnelle s’appuyant sur
Oracle.
Nous pensons que la LHCb CIC DB et ses outils auraient pu être implémentés dans le
projet ALMA. En faisant quelques adaptions, l’ensemble que nous avons développé
aurait pu s’appliquer pour la partie configuration et historique. Le cas inverse n’est
pas vrai, puisque les projets ALMA et VLT ne sauvegardent aucune information sur
la topologie des systèmes. En outre, la dualité entre équipement hardware et
équipement fonctionnel n’existe pas. Seul le niveau équipement physique est utilisé.

Résumé par chapitre de la thèse (en français)

 38

Un autre cas, où la LHCb CIC DB et ses outils auraient pu être utiles, est l’expérience
des chambres du système MUON chez ATLAS.
Là aussi, des modules doivent être configurés et la structure des systèmes doit être
décrite sous forme d’arbres. La Figure 14 montre le schéma des tables que ce groupe a
obtenu. Ils ont aussi appliqué le modèle relationnel. Le concept de port n’est pas
utilisé pour décrire la topologie des systèmes. Les paramètres de configurations sont
stockés de manière plus ou moins semblable à celle implémentée par le groupe de
support CERN PVSS.

Figure 14. Schéma des tables obtenu par le groupe des chambres du détecteur MUON chez
ATLAS.

Nous pensons que le schéma des tables de la LHCb CIC DB et les outils développés,
moyennant sans doute quelques ajustements, auraient pu s’appliquer dans ce contexte.
En tous cas, le niveau de granularité en matière de description des liens est plus fin
dans la LHCb CIC DB.

Conclusion

Cette thèse propose une architecture 3 tiers qui permet de configurer l’expérience
LHCb de manière « autonomics ». Cette architecture repose entre autres sur une base
de données Oracle relationnelle qui contient toutes les informations nécessaires pour
configurer l’expérience. Ces informations relèvent des paramètres de configuration
selon le type de module, de la topologie des systèmes et de l’inventaire/historique des
modules.
Une méthode utilisant les nombres premiers permet de modéliser une relation N :M
où une des deux entités a au plus 2.30*1034 valeurs distinctes. Cette méthode gagne en

Résumé par chapitre de la thèse (en français)

 39

simplicité en évitant de créer des tables supplémentaires. Selon les cas, la
performance peut être meilleure.
Routingtable_pck est un paquetage PL/SQL qui permet d’automatiser la création de
tables de routage et de destination. Leurs mises à jour se font aussi automatiquement
suite à un changement de topologie.
Des librairies intelligentes ont été écrites de façon à ce que des outils « autonomics »
puissent être implémentés, en réduisant les interventions humaines.
Enfin des interfaces graphiques, telles que CDBVis ont été développées afin de
visualiser et de modifier les informations contenues dans la LHCb CIC DB. CDBVis
permet aussi par exemple de détecter les erreurs lors de l’insertion des liens dans un
système.
Ce projet va suivre son cours. De nouvelles fonctionnalités vont être ajoutées aux
outils. Toutes les interfaces graphiques n’ont pas pu être complètement achevées.
En outre, une extension du schéma des tables de la LHCb CIC DB peut être faite en
ajoutant des informations sur les actions à prendre si telle erreur survient. En effet,
quand le détecteur va se mettre en marche, des erreurs plus ou moins connues vont
revenir à certaines fréquences. Ces erreurs qui se produisent un plus fréquemment que
les autres (telles qu’un comportement étrange de la carte VELO_TELL1_12 après une
coupure soudaine d’électricité) peuvent être stockées dans la base de donnée et on
peut leur associer un ensemble d’actions que le système de contrôle (en utilisant
PVSS et sa machine à états) peut prendre. Cela permet d’obtenir un système de
contrôle plus robuste.
De plus, des études sur le parallélisme peuvent être menées pour améliorer la
performance.

General introduction

 40

General introduction

Si l’homme parfois ne fermait pas les yeux, il finirait
 par ne plus voir ce qui vaut la peine d’être regardé.

RENÉ CHAR.

The configuration of large physics experiments

The topic of this thesis is the use of autonomics in the configuration of a large physics
experiment such as LHCb.

The LHCb (Large Hadron Collider beauty) experiment is located at CERN (the European
Laboratory for Particle Physics) [1]. It is one of the four experiments at the LHC (Large
Hadron Collider) [2].LHCb is an international collaboration containing around 500 physicists
from 50 participating institutes.

The objective of LHCb is to study CP violation on B mesons [3], a necessary condition for
explaining the dominance of matter over antimatter after the Big-Bang. Collisions between
two circulating beams of protons will generate particles that will produce signals in the
sensors of the LHCb detector.

The LHCb detector is a complicated collection of a large number (500,000) of devices. These
devices fulfil many different tasks and span a vast range of technologies. They range from
particle detection and identification to signal processing and data handling.

In this thesis we are mainly interested in the configuration of electronics components. The
configuration problem consists of configuring of the components such that they operate
correctly individually and together.

The Experiment Control System

The configuration of the experiment is the responsibility of the Experiment Control System
(ECS) [4]. The ECS needs:

• to know the information required to configure the experiment

• to be able to communicate with the different types of hardware and software,

• to verify whether the experiment has been configured properly and is in a correct state for
taking data.

Configuring an experiment consists of settings the registers of electronics modules,
downloading the right FPGA code [5], configuring software processes that are run on the data
processing farm [6]. The configuration data consists of all the parameters and their values to
be applied to hardware and software. The amount of configurable data depends on the type of
the device. It can go from a few bytes to a few MB. It can consist of setting a few thousands
of registers.

The links between the components have an influence on the configuration. There are millions
of links. Each subsystem (subdetector) has its own connectivity topology. The connectivity
must be described and is part of the configuration.

For instance, the TFC (Timing and Fast Control) [4] system which is responsible for the
synchronization between detector components, will distribute the clock to the active
electronics modules. The connectivity is required to determine to which electronics modules
the clock should be forwarded, and which path to take when doing so. The DAQ (Data

General introduction

 41

Acquisition) system [4] is a Gigabit network with around one hundred of routers. The DHCP
[7] and DNS [8] servers in this network need to be configured. Routing tables and DHCP
config files have to be made. Certain electronics modules [9] contain lookup tables (similar to
destination tables) which need to be made dynamically and downloaded. These tables depend
on the connectivity.

Connectivity information also helps the ECS in designing an adaptive architecture in case of
failures of modules. Using the connectivity, the ECS can derive the whole branch of devices
to be isolated further to the failure of such a module and make the decision to go on or not
with the data taking.

The granularity of the connectivity is important. For instance, there is a subsystem where
tracking data path is very important. If data is not properly transferred, the subsystem group
need to know not only which device fails but which component(s) nested in which
motherboard is(are) faulty.

It is expected that the LHCb detector will take data over a period of around 10-15 years. This
timescale puts important constraints on the configurability of the equipment. It is clear that on
this timescale some equipment will fail and will need to be replaced. The huge amount of
hardware in the experiment requires an automatic, reliable and reproducible system that can
be used by the ECS to configure and manage the equipment.

Autonomics

HEP experiments become more and more complex in terms of technologies and number of
items. Human errors, hardware or software failures are bound to happen. The ECS should be
able to detect them and to react accordingly especially in the case where an error has not been
predicted. Anticipating everything is not always possible. For instance, the data taking should
go on if one sensor is badly configured or it should stop only if there are more than M sensors
not correctly set. The value of M will certainly depend on the module type as a bad
configuration of a sensor has not the same impact as a router wrongly configured. The
experiment should then be adaptive. But also it requires knowing which modules are not
properly configured and where they are located. Searching for a sensor among hundreds of
thousands is a painful task if there is no mean to locate the faulty equipment.

Besides, budget and manpower are limited. It implies that the architecture should be as smart
and self-managed as possible.

Autonomic computing takes its inspiration from the autonomic function of the human central
nervous system. “Autonomic controls use motor neurons to send indirect messages to organs
at a sub-conscious level. These messages regulate temperature, breathing, and heart rate
without conscious thought. The implications for computing are immediately evident; a
network of organized, "smart" computing components that give us what we need, when we
need it, without a conscious mental or even physical effort” [10]. Thus autonomic tools are
self-organising and dimensioning software.

Implementing autonomic tools is very useful and starts to be used in HEP experiments and
LHCb is among them, especially in the Grid (data management). It allows reducing the
human intervention (and consequently human errors). It enables the ECS to better configure
and monitor the experiment. The ECS architecture is more robust and more reliable.

The ECS software architecture and its constraints

General introduction

 42

LHCb has an integrated ECS, that is, a unique and single control system for the whole
experiment. Usually, HEP experiments are designed with two separate control systems or
more (one control system per subdetector), one for the equipment which participates in the
data taking (sensors, switches, routers, PCs, electronics board, etc.) and another one for the
equipment which fuel the first group such as power supplies, High and Low Voltage, gas and
cooling system. The second group consists of mainly commercial products and controlling
them is slower (it is usually called the Slow Control system). The choice of an integrated ECS
has pros and cons. It forces the experiment to follow certain guidelines but on the other hand
the maintenance of the software is easier as they obey the same rules.

The ECS uses an industrial SCADA (Supervisory Control And Data Acquisition) system [11],
called PVSS [12]. A SCADA system is a central system used to supervise a site or a process
such as chemical, electrical processes which can execute logical processes without the master
computer (which supervises everything). As described above it is of crucial importance for
the ECS to be able to access information related to connectivity, configuration and
history/inventory of devices. One of the tools created as part of this thesis is the CIC
(Configuration Inventory Connectivity) DB, which is an Oracle database. In addition a set of
smart and adaptive tools were created which allow interactions with the database.

The main constraints on the design of this database are:

• use of a single database which will contain information about configuration,
connectivity and history/inventory and which should cater for all the subsystems1. It
implies an unique and generic database schema;

• all the information needed by the ECS to configure the experiment should be stored in
the CIC DB. Thus the information that the CIC DB contains should be complete.

• all the devices will be configured, monitored via PVSS. PVSS contains device drivers
to allow communicating with the different types of equipment. Thus the CIC DB
needs to have an interface for PVSS.

Objectives of the thesis

The main objective of this thesis is to provide the ECS with autonomic software tools which
guarantee:

• a configuration of all the devices, whatever the type and whatever the settings needed,
within one minute. It includes different types of configuration according to the physics
studies. It should be thus flexible.

• a fault detection of devices with their location. It also aims at updating the
configuration modules which are affected (such as routing tables of routers or look-up
tables for instance).

• equipment management in a consistent and robust way as the detector has to be
maintained for 10-15 years.

Contribution of the thesis

Methodology

1 A subsystem is either a subdetector or the TFC system or the DAQ system. A subsystem is supervised by the
ECS.

General introduction

 43

I have applied the following methodology to determine what information is needed by the
ECS to configure the LHCb experiment properly and to design and implement the software
architecture.

• Assimilating the LHCb environment with its different subsystems was one of the
essential aspects. It implies understanding the jargon of the HEP world.

• First I had to identify the different groups of users. Then for each group I had to
collect the requirements and use cases related to the project. I had to schedule at least
one meeting with each subsystem (there are 8, TFC and DAQ included) to understand
what kind of information they need to configure their subsystem. Sometimes it was
not really clear since the electronics modules of a given subsystem were not yet fully
operational. So there was a problem of time schedule. Also I got some contradictory
use cases. In that case, I went to see my project leader and exposed him the problem.
I contributed actively in the organisation of the CIC DB workshop [13]. I had prepared
a questionnaire [14] to identify their expectations.

• I had designed the CIC DB schema using the list of use cases and the ERM [15]. I had
collated the use cases and I had made several presentations of my work during Online
group meetings and LHCb week meeting (the whole LHCb collaboration).

• I had implemented a set of autonomic tools which requires no SQL [16] typing and
allows a consistent and robust manipulation of data stored in the CIC DB. I had also
written the documentation of the code so that people can use it. I also helped the
subdetector group and gave them some advices on how to use them and integrate them
in their application. It was similar to a tutorial. I also wrote a C-template to insert the
connectivity of a subsystem.

• Finally during the release of the different tools, I could verify if my tools and my table
schema were corresponding to the needs, otherwise the users provided me with
feedback. And I improved functionalities.

Software architecture

The software architecture I came up with is a 3-Tier Architecture composed of the three
following layers:

• Database layer. It consists of the generic and relational CIC DB schema (with the
indexes and the constraints) and a set of PL/SQL [17] routines. PL/SQL is very
convenient to build complex SQL queries. A PL/SQL package routingtable_pck has
been built to generate and update routing and destination tables. I have also
implemented a set of PL/SQL functions to manage the status of the equipment.

• Object layer. It consists of a C-library (CIC_DB_lib) which provides a set of functions
to manipulate the data (inserting, updating, deleting and querying) in a consistent
manner. It uses OCI (Oracle Call Interface) [18] as DB interface. OCI and C are
widely used in LHCb Online environment. Part of the functions embeds PL/SQL
codes. A lot of checks have been integrated to preserve data integrity in case of human
error such as mistyping or incoherent data such as a port of device connected twice.
Two bindings have been implemented on top of the library, one in Python (also
commonly used in LHCb group) using Boost [19] and one in PVSS (using GEH [20],
Generic External Handler) so that the ECS can interact with the CIC DB. There are
also two Perl scripts, one which creates the DHCP config file and another one which
creates the DNS files. These Perl scripts can be embedded in C applications in
combination with CIC_DB_lib, if needed.

General introduction

 44

• GUI (Graphical User Interface) layer. It covers all the PVSS panels which have been
implemented by users to configure the devices and are using the PVSS CIC_DB_lib
binding. There is also CDBVis, a Python tool based on the Python CIC_DB_lib
binding to navigate through the CIC_DB and allow fault detection.

Fault detection and verification of correctness

Another essential aspect was to make sure that the data stored in the CIC DB was complete
and correct. It has been achieved in the different layers of the architecture.

• Database constraints and triggers have been defined to ensure coherency in the update,
insertion and deletion of information. For instance, a device cannot be inserted twice.
PL/SQL programs are one of the essential components to ensure consistency of the
information. If a port of a switch fails, the status of the link is updated automatically
and paths going through this port are disabled.

• Check of input parameters given in the CIC_DB_lib, rolling back a transaction if
something (such as inserting ports of a device without having inserting first the
device) went wrong have been implemented to prevent from user mistyping or a bad
usage of the tool.

• The ECS, via PVSS, can use the functions provided by the PVSS CIC_DB_lib
extension to retrieve information about a device or connectivity between devices and
compare with the current results. PVSS communicates with software and hardware via
a system of commands and services (settings and reading back parameters). For
instance, PVSS had noticed that a switch is down, because it does not respond. It uses
the PVSS CIC_DB_lib to update the status of this switch. This triggers an update of
the routing tables. Then PVSS loads the newly updated routing tables from the CIC
DB, using PVSS CIC_DB_lib. And then it loads into the switches.

• CDBVis allows navigating through the CIC DB. It allows the user to verify that there
are no mistakes and that the connectivity has been inserted properly. Here also a lot of
checks have been built to ensure consistency and integrity.

Performance Issues

One of the requirements is to load all the information required to configure the experiment,
from the CIC DB to PVSS in less than one minute.

A lot of tests have been carried out to tune the SQL queries and the PL/SQL programs. Most
of programs have been reviewed by the CERN Database Support. With their help I also set up
some stressing tests, where a lot of data are being inserted.

Performance improvement, which had required a lot of work, has been done to find paths
between two devices. A requirement was it should not take more than a few seconds to find a
path between two devices.

Another type of key tests is the simulation of concurrent accesses to the CIC DB. I
implemented a C application which creates several processes which calls functions to query
the paths. I wanted to make sure that the execution time fits still within the few seconds
(requirement). This kind of tests is also interesting to check the behaviour of insert, delete and
update functions.

Organization of this thesis

General introduction

 45

This thesis is organized as follows:

• The first chapter focuses on the LHCb experiment. It describes its architecture. It also
presents the outlines of three important online subsystems: the TFC, DAQ and the
ECS. The CIC DB is integrated into the ECS.

• The second chapter gives a brief introduction to the configuration of a HEP
experiment. It presents the problems and what tasks need to be performed to configure
the experiment. It gives an idea of the complexity of the system in terms of electronics
modules and system topology. It also describes the software architecture which has
been built to handle this complex task.

• The third chapter describes the outline of the software architecture. It explains how the
software which interacts with the CIC DB has been built. It is a 3-tier architecture
which consists of the GUI (Graphical User Interface), object and database layers. The
database consists of two parts, the table schema and the PL/SQL programs. The core
of the object layer is a C-library which manipulates the data. The GUI layer is
composed of PVSS panels and CDBVis, a graphical editor. This architecture should
guarantee reliability, consistency and adaptability.

• The fourth chapter presents the approach adopted to propose a reliable and adaptive
architecture based on the CIC DB and autonomic tools. The users and requirements
are identified. Requirements and the use cases have been collected through discussions
and workshops. This step is essential to build an efficient system with a complete and
consistent table schema and a set of autonomic tools.

• The fifth chapter explains how the CIC DB table schema was derived by applying the
ERM (Entity Relationship Model) to the use cases found. Using the use cases, I have
determined the entities and their attributes. The choice of the ERM is discussed and a
brief reminder of the ERM is given. Also I describe another representation of the
hierarchy based on prime numbers. This new model has been compared with the
standard one (performance and limitation studies). I also show that the table schema is
complete and the information required to configure the experiment can be stored in the
CIC DB.

• The sixth chapter presents an application of the CIC DB to a computer network. The
routing and destination tables and DNS and DHCP config files in the DAQ computer
farm network are generated and updated automatically. The principles of the algorithm
are presented. It is one of the key components of the architecture of autonomic tools.
The algorithm has been implemented in PL/SQL and in C. The choice of the language
is discussed. Using this algorithm I describe a method to automatically generate the
DHCP config file. Also I explain how this algorithm has been extended to enable users
to get the detailed paths between devices and between components of devices. I also
explain how the DNS server can be configured using similar principles as for the
DHCP config file. This set of tools contributes in building an autonomic control
system.

• In the seventh chapter I describe the implementation of the autonomic tools to interact
with the CIC DB. It is a focus on the object layer. The tools are based on a C-library
which allows selecting, inserting, updating, and deleting information stored in the CIC
DB. The C-library integrates check functions to ensure a consistent and reliable
manipulation of data. It uses OCI to access the CIC DB. A binding to PVSS has been
provided as devices must be configured from PVSS. I have also implemented another
binding in Python used to build graphical editors.

General introduction

 46

• The eighth chapter describes the third layer of the architecture, namely the GUI layers.
Different user interfaces have been implemented going from PVSS panels to CDBVis.
CDBVis is a Python graphical editor which enables the users to navigate through the
CIC DB to detect faulty equipment. Connectivity can also be inserted with this tools

• The ninth chapter presents the different tests carried out to validate the table schema
and the algorithms related to paths. I have exercised the algorithm against different
types of topologies to test its robustness. I also have tested that the routing tables
generated could be programmed in real switches and routers. The DHCP config file
generated by our program has been put in a DHCP server to ensure compatibility.
Same remark for the DNS.

• The tenth chapter presents the different tests carried out to validate these tools, mainly
in the form of their integration into applications such as the TFC, and subdetectors.
Several groups are using them for different purposes such as configuring the network,
computing configuration parameters values (gain, voltages), etc.

• The eleventh chapter describes how other large experiments are configured. I present
the ATLAS thin gas chambers, the VLT (Very Large Telescopes) [21] and ALMA
(Atacama Large Millimeter Array) [22] projects. The two latter projects are related to
telescopes. The aim of this chapter is to show that our approach is generic enough to
be applied in other fields than LHCb.

• Finally I give some conclusions and suggestions for further extensions.

General introduction

 47

References

[1] CERN website, http://public.Ib.cern.ch/public/.

[2] LHC website, http://lhc.Ib.cern.ch/lhc/.

[3] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π Decay of
the K2

0 Meson, 10 July 1964. In Physical Review Letters, Volume 13, number 4. p 138-140.

[4] LHCb Collaboration, LHCb Online System Data Acquisition & Experiment Control,
Technical Design Report. CERN/LHCC 2001-040, LHCb TDR 7 December 19th 2001.

[5] Shebli Anvar, Olivier Gachelin, Pierre Kestener, Herve Le Provost and Irakli
Mandjavidze, FPGA-Based System-on-Chip Designs for Real-Time Applications in Particle
Physics. IEEE Transactions on Nuclear Science, June 2006, Vol. 53, number 3, Part I of three
parts. 14th Conference on real time (RT 2005) Stockholm, Sweden, June 4-10, 2005. p667-
670.

[6] E. van Herwijnen, L. Abadie, A. Barczyk, B. Damodaran, B. Gaidioz, C. Gaspar, R.
Jacobson, B. Jost, N. Neufeld, Control and monitoring of on-line trigger algorithms using a
SCADA system. Proceedings of the CHEP 06 (Computing in High Energy and Nuclear
Physics) Conference, Mumbai, India, 13-17 February, 2006.

[7] Dynamic Host Configuration Protocol, RFC 2131, March 1997,
http://www.ietf.org/rfc/rfc2131.txt.

[8] Domain Name System Protocol, RFC 1035, November 1987,
ftp://ftp.is.co.za/rfc/rfc1035.txt.

[9] LHCb Collaboration, LHCb Trigger System Technical Design Report. CERN/LHCC-
2003-031, LHCb TDR 10, September 2003.

[10] IBM research: Autonomic computing
http://www.research.ibm.com/autonomic/index.html

[11] A.Daneels, W.Salter, What is SCADA? October 8th, 1999. In the Proceedings of the
International Conference on Accelerator and Large Experiment Physics Control Systems,
1999, Trieste, Italy.

[12] ETM, PVSS II, http://www.pvss.com/index_e.asp?id=2&sb1=6.

[13] LHCb ConfDB workshop, http://indico.cern.ch/conferenceDisplay.py?confId=a055409.

[14] ConfDB questionnaire
http://lhcb-online.web.cern.ch/lhcb-
online/configurationdb/Documents/confDB/Configuration%20Database%20Questionnaire.do
c.

[15] DATABASE SYSTEMS, a practical approach to design, implementation, and
management written by Thomas Connolly and Carolyn Begg, 2002. Third Edition.
ADDISON-WESLEY. ISBN 0−201−70857−4. 1236 p.

[16] SQL Structured Query Language SQL-92 Standard, July 1992
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt.

[17] Steven Feuerstein, Bill Pribyl, Oracle PL/SQL Third Edition, USA: O’REILLY,
September 2002. 0-596-00381-1. 1018 p.

[18] ORACLE, Oracle Call Interface, Programmer’s Guide, 10g release 2. ORACLE PRESS,
OSBORNE. B14250-02, November, 2005. 1258 p.

[19]Boost Python, http://www.boost.org/libs/python/doc/

[20] GEH, Generic External Handler

General introduction

 48

http://itcobe.web.cern.ch/itcobe/Projects/Framework/Download/Components/GenericExternal
Handler/welcome.html
[21] VLT project,
http://www.eso.org/projects/vlt/sw-dev/wwwdoc/APR2004/dockit.html

[22] ALMA project,
http://www.eso.org/projects/alma/develop/acs/OnlineDocs/ConfigurationDatabase.pdf

General introduction

 49

Chapter 1 Overview of the LHCb experiment

 50

Chapter 1 Overview of the LHCb experiment

This chapter gives an introduction to the LHCb experiment. It is one of the four
experiments at the LHC. First we explain the purpose of the LHCb experiment.
Secondly we describe the structure of the LHCb experiment by presenting the
different subdetectors, the Online and Offline systems. Thirdly, we put the emphasis
on the ECS architecture and show how the use of autonomics tools can help with the
configuration of the experiment.

1.1 Purpose of HEP experiments

HEP is the study of elementary particles (photons, electrons, quarks etc.) and the
interactions (electric and magnetic forces unified with the weak and strong forces in
the Standard Model, gravity) between them. In HEP experiments, nature is compared
to theory in a reproducible and measurable way. A detector enables physicists to carry
out their measurements, i.e. the experiment. HEP experiments try to answer to
fundamental questions about nature:

• Where does the mass come from?

• Are particles elementary or can they be split into smaller components?

• What is the origin of the Universe?

HEP experiments use powerful machines, such as the LHC at CERN, to accelerate
elementary particles. Particles traveling near the speed of light and in opposite
directions can collide and create other particles. Then depending on the results of the
interaction, physicists can analyze the properties of the colliding and the created
particles, frequently very short lived and their interactions.

HEP detectors register the collisions between these particles. For instance, the LHC
replicates the conditions when the Universe was only a hundredth of a billionth of a
second old. An event is a collision between particles. In most cases, the collision
results just in the deviation of trajectories (elastic collisions).
HEP experiments involve many institutes from different places in the world which
design and build pieces of the experiments (hardware and software). It is important to
make sure that the integration is properly done.

1.2 The characteristics of the LHCb experiment

The LHCb detector is shown in Figure 15. LHCb is one of the four experiments at
LHC. Two beams of protons will be accelerated to the highest energy (14 TeV) ever
achieved in a laboratory to allow the creation of new particles.

Chapter 1 Overview of the LHCb experiment

 51

Figure 15. Side view of the LHCb detector.

1.2.1 Physics objectives

The laws of physics are founded on nature’s symmetries. Symmetry is an aspect of an
object that remains unchanged when something is done to it. For example, a chair
remains a chair even when it is rotated upside down. Many of the dynamical laws of
physics are a direct consequence of underlying symmetries. For example, the law of
conservation of energy turns out to be the consequence of time translation symmetry –
the fact that if you do an experiment today, it will have the same result as yesterday.

There are three important discrete symmetries in nature:

• Invariance under charge conjugation (C). This means changing the sign of the
charge of a particle: in fact this symmetry changes a particle into its
antiparticle.

• Invariance under parity (P). This means the sign of the coordinates are
changed. The laws of physics are the same when we observe nature from a
mirror.

• Invariance under time reversal (T)

It turns out that although violations of these symmetries are found, the product of the
three, CPT invariance is preserved. CP violation was first detected in 1962 [1]. Kaons
are more likely to decay in positrons (e+), on the left than in electrons (e-) on the right
as illustrated in Figure 16.

Chapter 1 Overview of the LHCb experiment

 52

Figure 16. Example of CP violation: Kaon decays.

The origin of CP violation is still one of the outstanding mysteries in particle physics.
Although the standard model can account for the observed CP violation in the Kaon
system the observed effects could also be accounted for by new physics. With the
high energy of the LHC, the b-production cross section is very large, so that a great
accumulation of b-events can be collected, allowing precision measurements of the
relevant observables. Furthermore, a number of states not accessible to the b-factories,
such as Bs and Bc can be studied. The Standard Model makes precise predictions for
the amount of CP violation that should be observed in a large number of B meson
decay modes.

CP violation also plays an important role in cosmology. There is an apparent excess
of matter over antimatter in the Universe and the amount of CP violation predicted by
the Standard Model is not sufficient to explain this excess.

The B meson system is therefore an attractive place to search for CP violation and to
search for a hint of new physics.

The LHCb detector, unlike other LHC detectors, does not provide a full 4 π coverage
(i.e. the whole space). This geometry was chosen because from computer simulations
it is known that at high energies both the b and b (antiparticle) hadrons are produced
in the same forward cone. (There is also a cone pointing backward but for reasons of
cost, the detector only looks at the forward cone). The detector is a single-arm
spectrometer with a forward angular coverage or acceptance from 10 to 300mrad. It is
20m long and 10 m wide.

Similarly, the average decay length for B mesons can be calculated to be around 1.0
cm (see Figure 17).

Chapter 1 Overview of the LHCb experiment

 53

Figure 17. A typical p-p collision producing 2 types of B mesons.

1.2.2 Subdetectors

The LHCb detector is composed of several subdetectors that each has a specific task.
During a normal physics data taking run they will all be up and running; however
during debugging runs they can be operated independently:

• Vertex Locator (VELO) [2]. The purpose of the VELO is to determine the
position of the collision and the secondary vertices that characterize the events
that could display CP violation.

• Pile-Up System (PUS) [2] is located upstream from the VELO. Its task is to
identify and reject bunch crossings where multiple p-p collisions occurred at
the same time. This is because analysing such as collisions is more difficult. It
is not represented in Figure 15.

• The RICH (Ring Imaging Cherenkov) [3] subdetector is divided into 2 parts,
the RICH1 before the magnet and the RICH2 after the magnet. The RICH
subdetectors will allow charged pion/kaon separation.

• The Trackers consist of 3 stations (T1, T2 and T3) and a Trigger Tracker
(TT). T1, T2 and T3 are located between the magnet and RICH2. The Trigger
Tracker is between the RICH1 and the magnet. The main objective of the
tracking system is to provide precise measurements of momentum of charged
particles. Each tracking station (T1, T2 and T3) has an Inner Tracker (IT)
and an Outer Tracker (OT) [4]. The Inner Tracker and Trigger Tracker (TT)
constitute the Silicon Tracker (ST) [5]. The OT uses aluminium frames and
straw tubes.

• The Calorimeters [6] will permit identification of electrons, hadrons and
photons. They will also provide energy and position measurement. There are 4
subdetectors, PreShower (PS), Scintillator Pad Detector (SPD), ECAL
(electron calorimeter) and HCAL (hadron calorimeter).

• The Muon [7] detector is composed of 5 stations. Muons appear in the final
states of the decays. The objective of the Muon System is to allow muon
identification which is required by the trigger.

Chapter 1 Overview of the LHCb experiment

 54

1.2.3 Online system

In addition to the subdetectors and the front-end electronics, the entire system related
to the operation of the detector is referred to as the “Online System”. It is a large real
time system, often with strong requirements on the response time. Globally, it can be
viewed as consisting of four subsystems with respect to their tasks and requirements,
TRIGGER, TFC, DAQ and ECS (see Figure 18).

Figure 18. From the detector to tape.

1.2.3.1 The Trigger

At LHCb, there are two levels of trigger, the Level 0 (L0) trigger [8] and the High
Level Trigger [9] (HLT).

For this thesis it is important to note that the timescale mentioned in the next two
subsections is independent of the timescale on which the detector should be
configured. The configuration may take seconds or even minutes.

1.2.3.1.1 The L0 Trigger

After a collision each subdetector will measure specific parameters. The probability
that two protons collide is low, roughly 30% of the bunch crossings2. The probability
that the collision produces B mesons is even lower, about 1 out of 160 events.

2 The particle beams are formed in “bunches” of a few centimeters in length and the size of a hair in
cross section. So a bunch crossing corresponds to the collisions between two beams of particles.

Chapter 1 Overview of the LHCb experiment

 55

The trigger reduces this rate to a manageable amount, both in terms of readout speed
as well as in terms of the required storage space.

The L0 trigger is implemented in the hardware and is based on the output of three
subsystems, the Pile-Up, the calorimeters and the Muon system. It reduces the event
rate from 40 MHZ to 1 MHz. It will select the most interesting events containing B
decays with a high transverse momentum and reject less interesting events or events
with multiple (>2) vertices . The decision to keep or reject an event has to be taken
within 4 microseconds. During that time, roughly equivalent to 160 bunch crossings,
the L0 front electronics will store the events in a pipeline memory.

1.2.3.1.2 The HLT

The HLT (High Level Trigger) is based on software and run on the event filter farm.
It reduces the event rate to a few kHz.

The HLT Trigger algorithm running on farm PCs processes full events. A full event,
i.e. the collection of all fragments of an event sent by the TELL1 boards at the same
time, is treated by one single farm node. Data come at 1MHz and is processed in the
Event-Filter-Farm (EFF) farm composed of roughly 2000 PCs. The HLT algorithm
must take at most 2ms per event. The HLT algorithms need to be configured
according to the running mode as the selection of the events depends on the physics
studies.

1.2.3.2 The DAQ

1.2.3.2.1 Architecture
The DAQ is responsible for sending the selected data to permanent storage. It uses a
Gigabit Ethernet based on IP protocol. There are two separate networks (different
switches, different links), the data network and controls network. Each of them has
their own equipment. The data network is used to carry the events’ data coming from
the detector. The controls network is used to configure and monitor the equipment.

Chapter 1 Overview of the LHCb experiment

 56

Figure 19. Overview of the DAQ system which includes the controls and data paths.

As shown in Figure 19, in the data network, the TELL1 boards are sources and the
farm nodes (in the Event Filter Farm) are destinations.

1.2.3.2.2 The TELL1 boards

The TELL1 boards (see Figure 20) receive data only if the L0 Trigger accepts the
events. They clean and digitize the signals. They process and format the fragments of
several events according to the MEP (Multi-Event Packet) protocol [10]. This
protocol consists of grouping several (N) fragments of events in one packet. N is
called the packing factor and can be changed during a run. This value is sent by the
readout supervisor (see section 1.2.3.3) to the TELL1 boards. The MEP is integrated
in IP packets as shown in Figure 21. TELL1 boards have 5 Gigabit interfaces (2 data
interfaces and one controls interface).

Chapter 1 Overview of the LHCb experiment

 57

Figure 20. One TELL1 board on the left and 6 TELL1 boards on the right.

Figure 21. Overview of the MEP embedding.

1.2.3.2.3 The farms

There will be two types of farms (see Figure 19).
The event filter farm (EFF) runs HLT algorithms. Each farm node receives MEP
packets so that full events can be reconstituted (the number of events built up will
depend on the packing factor which is included in MEP packets).

The monitoring farm will allow subdetectors to run special analysis jobs to
determine whether a subdetector is running correctly. A partial reconstruction will
allow the monitoring of the physics data quality. These analysis tasks produce
histograms that will be displayed by the control system. Part of the histograms will be
produced using the events rejected by the EFF.
Sources and destinations are connected by switches and routers.

1.2.3.2.4 Permanent storage

If the event has been accepted by the HLT, it goes to the CERN mass storage system
called CASTOR (which is hosted by CERN’s IT department) [11]. However the
storage network in the pit is capable of storing between 5 and 10 days (depending on
the amount of data which need to be written) of events in case of problems with the
storage on Castor. It is foreseen to store 1 PB of data per year.

1.2.3.3 The TFC

1.2.3.3.1 Architecture

Chapter 1 Overview of the LHCb experiment

 58

Figure 22. Simplified schema of the TFC connectivity.

The TFC system will receive the LHC clock and send it to all the L0 electronics and
TELL1 boards for synchronization. It will also forward the L0 trigger decision to the
L0 boards.
Referring to Figure 22, the TFC system consists of several kinds of equipment.

The readout supervisors are the masters of the TFC system. They fulfil different
tasks:

• clock distribution from the LHC clock,

• forwarding and processing the L0 decision to the L0 electronics, TELL1 boards,

• destination assignment of the event,

• buffer overflow control,

• auto generating test triggers (calibration, monitoring and debug),

• sending synchronous reset commands

• sending a fragment of an event (specific information about a run such as the run
number, the event ID, and the orbit signal, etc.)

The registers of these devices must be configured. There are also FPGA codes to
download.

The Fan-outs or passive switches split the signal. These switches cannot be
configured.

The TFC switch (see Figure 22) has 16 inputs and 16 outputs. Ports can be disabled
or enabled. The TELL1 boards of a given subsystem are connected via several fan-
outs to one or two outputs of the TFC switch. None of the outputs can be connected to
two different subsystems because the partition (ensemble of subdetectors selected to

Chapter 1 Overview of the LHCb experiment

 59

take data, see 1.2.5 for more details) will be based on the connectivity of this switch.
The internal connectivity of this switch must be configured. It is derived from the
selected partition. It will be explained in more details in Chapter 2.
The throttle switches are in blue. They are responsible for sending a fast alarm to the
readout supervisors in case of buffer overflow in the L0 or TELL1 boards. The
internal connectivity of this switch must also be configured. There is a
correspondence between the internal connectivity of the throttle switch and the TFC
switch. Indeed the output port numbers used in the TFC switch must correspond to the
input port numbers of the throttle switch. The input port numbers used in the TFC
switch must correspond to the output ports of the Throttle switch. This concept is
shown in Figure 23.

Figure 23. Example of internal connectivity. Inputs of the TFC switch are on the top whereas the
inputs of the Throttle switch are on the bottom.

Thanks to this mapping, we can know which subsystem(s) has (have) triggered an
alarm.

1.2.3.3.2 Interaction between the TFC and the DAQ

The TELL1 boards need to specify the IP address of the destination farm node when
building their MEP packets. They get this information from the readout supervisor
who knows which farm nodes are free. Indeed when a farm node is free, it sends a
request for events to the readout supervisor via the Force Ten router. Then based on
the dynamic destination assignment algorithm [12], it selects one farm node among
the free ones.

1.2.3.4 The ECS

The ECS is responsible for the control and monitoring of the detector and the data. It
is based on PVSS, a SCADA system.
See 1.3 The ECS.

Chapter 1 Overview of the LHCb experiment

 60

1.2.4 Offline

The Offline system consists of all the physics software used to analyze and
reconstruct tracks based on the data stored during data taking.

It uses farms of PCs for simulation, reconstruction and analysis.. Technologies based
on Grid [13] such as DIRAC [14] allow data access to universities outside CERN
using computing resources from all around the world.

To test and validate the algorithms, the Offline System organizes Data Challenges.
During that time, events are produced using Monte Carlo programs for simulating the
behavior of the detector.

1.2.5 Operating the detector

An activity corresponds to a configuration of the detector. It will depend on the type
of data being taken. Examples of types of data taking activities are physics (the
normal situation), alignment (to determine the position of the detector with respect to
the beam), calibration, cosmics, testbeam etc. One essential task is the alignment of a
subdetector with the beam. Alignment will determine the quality of measurement. It
should be possible to control and configure a subdetector independently of the others
to allow a very precise alignment. A subdetector will be configured differently if it is
used for alignment or for physics. The number of parameters to load into devices
depends on the type of running mode. Usually there are millions of parameters to load
into the equipment.

The detector of a HEP experiment consists of several subdetectors which have to
perform a specific task (e.g. alignment mentioned above, determination of track
parameters, etc.).

Subdetectors are designed and built by several institutes. The equipment will be
integrated and commissioned. Consequently it should be possible to test part of a
detector. For these reasons, HEP experiments define the concept of partitioning. A
partition is a set of subdetectors which can run independently and concurrently. It is
possible to define one or several partitions at the same time depending on the
architecture of the experiment.

A run corresponds to the period of physics data collection. The detector must be
configured to allow a run. A run ends when the DAQ stops taking data. However the
detector is still powered on. The partition (i.e. which subsystem will take data) and the
activity (how devices will be configured) must be specified.
When the detector becomes operational, i.e. starts to take data, operators will be on
shift to make sure that everything is running according to plan. However failures or
unforeseen behavior of the equipment are bound to happen. Automatic programs are
not sufficient by themselves to ensure the control of the detector. Configuring,
monitoring and control of the detector will be handled by the control system. The
operators will inspect histograms produced by the software to check if the detector
behaves as expected.

The operator can start and stop the detector. If an error occurs that cannot be fixed, the
operators can call an expert to solve the problem. Tools are required to allow a good
visualization of the essential information and also provide all the information needed
to operate the detector in case of problems. If an electronic board fails, all the devices
which are affected by this failure must be known for subsequent analysis.

Chapter 1 Overview of the LHCb experiment

 61

People on shift are trained to know the basic rules so that they can intervene when a
simple problem occurs.

1.2.6 Equipment management

Usually HEP experiments run over many years, around 10 years. Part of the
equipment is exposed to radiation. They are more likely to break down. They will be
replaced. Thus it is necessary to manage equipment, i.e. at any time the number of
spares by types or the location of any devices should be known.
Also all the software parts should be maintained and sometimes should be updated
according to the technology evolution.

The longevity of the experiment also poses a stringent constraint on the robustness of
the software and the underlying tools, e.g. Oracle.
To permit the detector to run over years, inventory and history mechanisms are
required.
How many spares of a given device type are left? Where is a given module located?
How often does a given device fail? All these kinds of questions are very important to
maintain the detector.

1.3 The ECS
The ECS is responsible for supervising the experiment.

1.3.1 Control system architecture

Figure 24 depicts the architecture of the ECS. It consists of different components:

• PVSS which is the SCADA system used to control and configure the LHCb
experiment. (See 1.3.2.1 PVSS for more details). It is the central part which
communicates with all the other components of the ECS using LHCb frameworks
(specific set of tools developed by LHCb and integrated in PVSS);

• DIM (Distributed Interface Management) system [15] which permits to send
commands and receives services between PVSS and the modules (see 1.3.2.2)

• FSM (Finite State Machines) [16] which permits to model the behavior of the
experiment using states and actions (see 1.3.2.3 for details);

• The CIC DB, an Oracle DB, which contain the information necessary to configure
the experiment (see Chapter 3 for the software architecture);

• The Conditions DB (Cond. DB) [17], an Oracle DB, which contain snapshots of
the time-dependent parameters used for physics computing such as environmental
parameters;

• The PVSS archiving DB, an Oracle DB which contains snapshots of some
monitoring values used for subsequent analyses.

Chapter 1 Overview of the LHCb experiment

 62

Figure 24. The ECS software architecture.

The ECS consists of a hierarchy of a controls PCs where PVSS and LHCb specific
framework are installed. The characteristics of this hierarchy are described in section
1.3.2.3.

Each controls PC is responsible for a part of the equipment.

At start up of data taking the controls PCs will then send requests to the CIC DB to
determine what and how electronics modules should be configured. The CIC DB will
provide the controls PCs with the necessary information. Then the controls PCs will
configure the equipment they supervise.

Data taking will start when all the equipment has been configured. To allow tracking
reconstruction, some parameters (temperature, pressure for instance) must be
measured and saved in the conditions DB.

The online acquired data used to monitor the detector is saved in the PVSS archive
database. Finally, at the end of a run, it is also possible to save configuration settings
into the CIC DB.

1.3.2 Controls software

1.3.2.1 PVSS

To build a control system with PVSS we have to model the detector components in
the hierarchy required by the ECS. The LHCb experiment is composed of many
devices. It can be modelled as a tree of PVSS “datapoints”.

Chapter 1 Overview of the LHCb experiment

 63

Each device is associated to a data point (DP), an instance of a data point type (DPT).
Data point types are similar to object oriented classes with their attributes. For
instance, for the type (class) of devices “TELL1” there will be a corresponding DPT.
VELO_TELL1_22 and MUON_TELL1_12 (the instances) will have DPs of DPT
TELL1. They will have the same structure but with different values. All the
configurable and controllable electronics modules will be modelled using DPTs and
their configurable parameters will be stored inside DPs.

PVSS provides support for setting and reading values to/from hardware.
Communication between the commercial hardware (High/Low voltage for instance)
and PVSS takes place via the OPC protocol [18] provided by manufacturers such as
CAEN [19], WIENER [20], etc. (not represented in Figure 24)

For home-grown equipment such as L0 electronics, TELL1 boards, the
communication is done via DIM (see Figure 24). Then a DIM server receives and
sends information to the real hardware via SPECS [21] or CCPC [22], protocols
developed by LHCb. SPECS tends to be used for equipment exposed to radiation,
CCPC for TELL1 boards.

Panels and scripts are implemented to control and configure devices. Figure 25 shows
an example of a PVSS panel which displays and permits to change important
hardware parameters.

Figure 25. Example of a PVSS panel.

1.3.2.2 DIM

DIM is a communication system for distributed / mixed environments, developed at
CERN. It provides a network transparent inter-process communication layer. At
LHCb, it will be used to ensure communication between modules and PVSS. Thus
configuration information will be transmitted to the modules via DIM. DIM servers
need to be implemented to translate the information between PVSS and the hardware
equipment. Then, CCPC or SPECS are used to transfer the information between the
DIM server and the hardware equipment. In the case of the DAQ, the communication
between switches, farm PCs are direct with the DIM servers.

1.3.2.3 FSM

Chapter 1 Overview of the LHCb experiment

 64

The LHCb experiment will be modelled as a tree as shown in Figure 26. The leaves of
the tree correspond to the experimental equipment. The other nodes correspond to
logical objects used to model the detector. The parent supervises its children.

A Finite State Machine (FSM) mechanism has been integrated with PVSS using
SMI++ [23]. The control of the experiment using states, commands, transitions and
actions is realised using this FSM.
Each node has 5 possible states {NOT_READY, READY, RUNNING, ERROR,
UNKNOWN} as shown in Figure 27. The FSM framework provides panels to enable
the user to define the different transitions using conditions such as if ALL the children
are in state READY, go to state READY. Actions, which need to be triggered after or
before a change of state or during a transition, can be implemented using scripts.

Figure 26. The LHCb experiment modeled as a tree.

Figure 27. States and transitions of the detector.

 Each subsystem has to design their own sub-tree following guidelines[24]. They have
to define the transitions, i.e. which operations to perform to go from a state to another
one. They also have to handle errors, for instance, what to do if one of the children is
not in state READY.

Chapter 1 Overview of the LHCb experiment

 65

1.3.2.4 Modeling the behavior and states of a device with FSM

The behavior and states of each module should be represented. When a configuration
is applied to one or a set of devices, it should be possible for the shift operator to
know the devices which should have been configured, the ones which have been
properly configured and the ones which not. Also if a power supply, PS_45 for
instance, fails, the information “power supply PS_45 fails” should be propagated to
the devices affected by this failure. And these latter should change their behavior and
state and react.
So for each module type, a set of states and transitions associated with actions should
be defined by the designer using the FSM guidelines and toolkit.

1.3.3 Use of the CIC DB and its autonomic tools

The CIC DB has been implemented using Oracle. It will contain information to permit
the configuration of the experiment. It covers three types of data:

• Configuration information which corresponds to register values of devices, FPGA
code to download, etc. A configuration is identified by a list of devices and a
collection of (parameter, value)-pairs per device of the list.

• Connectivity information consists of representing links between devices. It is used
to configure the DAQ network (routing tables for instance) to handle partitioning
for the TFC, in some algorithms to compute parameter values, and to check that
the data path is properly set.

• Inventory and history information to manage and trace the equipment.
Associated with the database, we have developed a set of autonomic tools which
automates the creation and updates of routing tables and destination tables. They also
permit a non-DB expert to safely manipulate the data by reducing the human
intervention and by implementing check functions.

1.3.4 Configuring the detector

At start up, all the subsystems will have the state NOT_READY as shown Figure 28.

Chapter 1 Overview of the LHCb experiment

 66

Figure 28. Very simplified LHCb RUN CONTROL PVSS panel.

1. The shift operator has to define a partition. Referring to Figure 28, it is done

by clicking on the lock of the subsystems and click on “Take”. In Figure 28,
the partition consists of the whole detector so “Take” has been clicked at the
level of the RUN CONTROL SYSTEM (the top node).

2. Then the user selects a running mode and clicks on “Configure” as shown in
Figure 29. As the state is NOT_READY, the only action is Configure referring
to Figure 27. The selected configuration is “PHYSICS”.

Chapter 1 Overview of the LHCb experiment

 67

Figure 29. Very Simplified view of the "Configure" command.

The action (or command) “Configure” covers all the operations to configure
the equipment using the CIC DB.
This command is forwarded along the tree from the top node to the leaves. All
the subsystems will load their settings related to “PHYSICS” from the CIC
DB in PVSS and apply to the hardware using drivers. PVSS will send
command to the hardware to check whether they are properly configured.

3. The children properly configured go to READY. If all the children are
READY, the parent goes to READY. The state goes up to the top node by
propagation of the state information along the tree. Figure 30 shows the case
where everything has been configured properly into PHYSICS mode.

Chapter 1 Overview of the LHCb experiment

 68

Figure 30. Very Simplified view of "Start the run".

1.4 Conclusion

In this chapter, we have presented the overview of the LHCb experiment. The
detector is composed of different subdetectors with different tasks. They are
composed of different types of modules. The Online system with its main components
(TRIGGER, TFC, DAQ and ECS) is responsible for respectively selecting the most
interesting events, synchronizing the equipment, forwarding the events’ data from the
detector to the permanent storage and to operate the detector.

The ECS architecture is based on PVSS and uses FSM toolkit to model the behavior
of the experiment via states and actions. One of the essential steps of operating the
detector is the configuration. The next chapter describes the configuration issues of
the LHCb experiment.

Chapter 1 Overview of the LHCb experiment

 69

References
[1] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π
Decay of the K2

0 Meson, 10 July 1964. In Physical Review Letters, Volume 13,
number 4. p 138-140.

[2] LHCb Collaboration, LHCb Vertex Locator Technical Design Report.
CERN/LHCC 2001-0011, LHCb TDR 5, May 31th 2001.

[3] LHCb Collaboration, LHCb RICH Technical Design Report.
CERN-LHCC-2000-037, LHCb TDR 3, September 7th, 2000.

[4] LHCb Collaboration, LHCb Outer Tracker Technical Design Report.
CERN-LHCC-2001-024, LHCb TDR 6, September, 2001

[5] LHCb Collaboration, LHCb Inner Tracker Technical Design Report.
CERN-LHCC-2002-029, LHCb TDR 8, November 8th, 2002.

[6] LHCb Collaboration, LHCb Calorimeters Technical Design Report.
CERN-LHCC-2000-036, LHCb TDR 2, September, 2000.

[7] LHCb Collaboration, LHCb Muon System Technical Design Report.
CERN-LHCC-2001-010, LHCb TDR 4, May 2001.

[8] LHCb Collaboration, LHCb Trigger Technical Design Report.
CERN-LHCC-2003-031, LHCb TDR 10, September 9th 2003.

[9] LHCb Collaboration, LHCb Computing Technical Design Report.
CERN-LHCC-2005-019, LHCb TDR 10, June 2005.

[10] Jost B., Neufeld N., Raw-data format transport, LHCb Technical Note,
September, 2004. EDMS 499933.

[11] CASTOR CERN Advanced Storage Manager, http://castor.web.cern.ch/castor/.

[12] J.-P. Dufey and R. Jacobsson, MEP Destination Assignment in the 1MHz
Readout Scheme,

http://lhcb-online.web.cern.ch/lhcb-online/TFC/default.html#documents.

[13] Grid deployment at CERN, http://lcg.web.cern.ch/LCG/.

[14] V. Garonne, Étude, définition et modélisation d'un Système Distribué à Grande
Échelle : DIRAC - Distributed Infrastructure with Remote Agent Control.
PhD : Comp. University Aix-Marseille II : 2005, 192 p.

[15] C.Gaspar, M.Donszelmann, DIM a distributed information management system
for the DELPHI experiment at CERN. In the Proceedings of the 8th Conference on
Real-Time Computer applications in Nuclear, Particle and Plasma Physics,
Vancouver, Canada, June 1993.

[16] C. Gaspar and B. Franek, Tools for the Automation of Large Distributed Control
Systems, In IEEE Transactions on NUCLEAR SCIENCE, June 2006, Volume 53,
Part III of three parts. Number 3. 14th Conference on real time (RT 2005) Stockholm,
Sweden, June 4-10, 2005. p 974-979.

[17] M. Clemencic, J. Palacios, N. Gilardi, LHCb Conditions Database, in the
Proceedings of the CHEP06 Conference, February 13-17, 2006.

[18] R.Barillere et al, Results of the OPC Evaluation done within the JCOP for the
control of the LHC Experiments, October 1999. In the Proceedings of International
Conference on Accelerator and Large Experimental Physics Control Systems, 1999,
Trieste, Italy.

[19] CAEN, http://www.caeneng.com/news.htm.

Chapter 1 Overview of the LHCb experiment

 70

[20] WIENER, http://www.wiener-us.com/.

[21] D.Breton, D.Charlet, P.Robbe, I. Videau, SPECS : A SERIAL PROTOCOL FOR
EXPERIMENT CONTROL SYSTEM IN LHCB. In the proceedings of 10th
ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems,
Geneva 10-14 Oct 2005, WE1.5-4O.

[22] F. Fontanelli, G.Mini, M.Sannino, Zbigniev Guzik, R. Jacobsson, B.Jost, N.
Neufeld, Embedded Controllers for Local Board-Control, IEEE Transactions on
Nuclear Science, June 2006, Vol. 53, number 3, Part III of three parts. 14th
Conference on real time (RT 2005) Stockholm, Sweden, June 4-10, 2005. p936-940.

[23] SMI State Management Interface, http://smi.web.cern.ch/smi/smi_2.html.

[24] Pierre-Yves Duval, Guide for ECS FSM design in LHCb detectors, LHCb
Technical Note, May 9th 2006. EDMS 655828.

Chapter 1 Overview of the LHCb experiment

 71

Chapter 2 Configuring the LHCb experiment

 72

Chapter 2 Configuring the LHCb experiment

This chapter tries to give an outline of the task “configuring the LHCb detector”, a
huge network of various devices. The first part describes the needs of the subsystems
in terms of configuration. They are different as they use different module types.
Combining different types of information such as connectivity and configuration
parameters is also required to build a single-click control system. Secondly we
explain what information is needed to configure the DAQ network. It includes routing
tables, the configuration of the DHCP and DNS servers. Thirdly we present the
concept of partition and its impact on the TFC system. Then we show the needs to
manage the equipment so that the experiment can have a long lifetime. Then we
explain how to handle fault detection and the strategy applied within LHCb. The ECS
needs to make sure that the different subsystems are connected and properly
configured. It should also make a decision if any problems occur while configuring.
The introduction of autonomic tools is very convenient as it reduces human
intervention. An autonomic tool is a self-intelligent agent or application which makes
the updates automatically. The current commercial leader is IBM with BluePrint [1].
In this chapter, we also try to explain to what extent autonomic tools are used.
Finally we present briefly how performance measurement can be achieved.

2.1 Configuring the electronics

As seen in Chapter 1, a HEP experiment consists of between hundreds of thousands
and millions of electronics modules of different types. All of them need to be properly
configured.

2.1.1 New and different types of electronics

Experiments at LHC have integrated new types of devices and technologies in the
design of the experiment. For instance, to interface the electronics to the control
system SPECS (Serial Protocol for the Experiment Control System) and credit-card
PCs are used. SPECS are essentially used for modules in radioactive area. SPECS is a
protocol based on a 10Mbit/s serial link defined to be suited for the general
configuration of remote electronics elements. It is a single master multi-slave bus.
Credit-card PCs are embedded PCs used to provide the necessary local intelligence on
an electronics board. They are connected to the central ECS via a conventional
Ethernet and allow accessing the various components of the board.

Thus types of parameters such as SPECS addresses, FPGA codes, and registers of
different sizes need to be set.

The type and the design of the detector technology and the electronics depend on the
sub-detector.

For instance, the RICH detector uses HPDs (Hybrid-Photon Detector) [2] as shown in
Figure 31. These devices need to be powered according to certain voltage and current
settings.

Chapter 2 Configuring the LHCb experiment

 73

Figure 31. Six HPD devices in the RICH subdetector.

The VELO uses R- and Φ-sensors mounted on a hybrid [3] which have 16 beetles
(chips) to configure as shown in Figure 32.

Figure 32. A VELO R-sensor with the 16 beetles chips.

2.1.2 A very large number of items to configure

The number of parameters to configure (and consequently the amount of data)
depends on the type of devices.

For example, for the RICH1 and RICH2, the amount of data to configure for the L0
electronics is given by the Table 1:

Electronics
type

Number in
RICH1

Number in
RICH2

Amount of
config data
by
electronics
type (bytes)

Total
RICH1
(Kbytes)

Total
RICH2
(Kbytes)

HPD 196 252 5125 1004.50 1291.50
L0 board 98 126 37.50 3.67 4.72
 1008.17 1296.22

Table 1. Amount of data to configure for the RICH system.

The IT and TT trackers for instance have less configuration data for the L0 electronics
module as shown in Table 2:

Chapter 2 Configuring the LHCb experiment

 74

Electronics
type

Number in
IT

Number in
TT

Amount of
config data
by
electronics
type (bytes)

Total IT
(Kbytes)

Total TT
(Kbytes)

Beetle 1120 1108 20 22.400 22.160
GOL 1120 1108 1 1.120 1.100
Control
cards

 24 24 11 0.264 0.264

 23.784 23.524
Table 2. Amount of data to configure for the IT and TT systems.

The type of parameters depends on the device type as it is shown in the Table 3.

Board name Number of

boards
component
name

Parameters to
configure

Number of
components /
board

Hybrid 84 Delay chip - 6*8-bit
registers

1

Hybrid 84 Beetle - 20*8-bit
registers
- 1*16 byte
register

16

Control Board 14 TTCrx - 3*8-bit
registers

1

Control Board 14 SPECS Slave - 3*8-bit
registers
- 4*32-bit
registers

1

Temperature
Board

5 Chip - 1*64 bit
register
- 1*8-bit register

1

Repeater board 84 LV regulator - 1*8-bit register 1

Tell 1 board 88 Channel - Pedestal 1*10-
bit
- Threshold 2*8-
bit
- FIR 3*10-bit
- Gain 1*14-bit

2048

Tell 1 board 88 FPGA code - firmware 4

High Voltage
power supplies

84 Commercial predefined

Low Voltage
power supplies

84 Commercial predefined

Table 3. Amount of data to configure for the VELO system.

So the number of items and the quantity of items which need to be configured
depends on the subsystem. It will have an impact on the execution time to load a

Chapter 2 Configuring the LHCb experiment

 75

configuration for the whole experiment. As a reminder, the whole experiment should
be configured in less than a few minutes.

The design of the subsystem in PVSS in terms of datapoint type structures will be
affected. Shall all the details (registers for instance) be declared as datapoint
elements? It is one of key point in modeling the control system of a subsystem in
PVSS. The only way to solve the problem is to make some tests to compare the
different representations

2.1.3 Using the connectivity to configure devices

In some subsystems, configuring the modules depends on the connectivity. For
instance, in the HCAL subsystem, they need to configure PMTs [4], INT (Integrators)
[4], LED [4], DAC [4] and FE [4] boards. A PMT transforms the light from the
photons into electronic signals (photoelectrons). The LED emits light to the channel.
It will allow calibrating the calorimeters and simulates the detector response. It is also
used to control the linearity of the readout chains. The other three boards (DAC, INT
and FE) are used to process the signals.

Figure 33 shows a simplified view of the HCAL connectivity. Each channel is
connected to a PhotoMultiplier Tube (PMT) and two LEDs. A PMT is connected to a
FE, an Integrator and a DAC board. The DAC boards power the PMT via HV. The
INT boards measure the current from the PMT. It is for calibration purposes.

A LED is connected to a FE board and to a DAC (Digital Analog Converter) board. A
DAC board can be connected at most to 200 PMTs and at most to 16 LEDs. FE and
DAC boards process the electronics signal. A FE board can be at most connected to
32 PMTs.

Figure 33. Simplified view of the HCAL connectivity.

To configuring the devices, the following information is required:

1. Info 1: The configuration and monitoring of the high voltage and the current
of the DAC, INT and FE modules will be done via SPECS. They need to
know the different SPECS addresses to communicate with the SPEC master
which is located on a controls PC. So given a channel name, the respective

Chapter 2 Configuring the LHCb experiment

 76

SPECS address for the DAC, INT and FE associated with it should be
returned.

2. Info 2: The gain must be monitored. It is computed as follows G=G0HVα.

Typically G0 and α will be properties of each PMT. A measurement will allow
getting the value of the gain. If it is dropping, the HV needs to be adjusted.
The calculation of the new HV needs to know what PMT it is connected to a
given channel name as they know which channels are associated to a given
DAC board. Then during a run the gain can be recomputed according to
HV’=HV (G’/G)1/α .

3. Info 3 : Each channel will be illuminated by two LEDs. For calibrations
purposes, they will ask which LED(s) illuminate the given channel name.
Besides each link between a channel and a LED is associated with a quantity
of light which is used for computations.

So configuring a module can also depend on its connectivity. It requires then a
coherent and structured way to access the different types of information stored in the
CIC DB.

2.2 Configuring network equipment

Another new type of equipment which is used in HEP experiments is network devices
such as switches, routers, DHCP and DNS servers. Their configuration does not
depend on the running mode.

2.2.1 The DAQ network (reminder)

The DAQ network has been described in Chapter 1. It is a Gigabit network based on
IP. It consists of switches/routers and diskless farm nodes (PCs). There are two
separate networks:

• The data network is used to route data traffic from the detector in the form of
MEP packets from the TELL1 boards to the farm node and to send the most
interesting events to permanent storage.

• The controls network is used to send controls commands such as start and stop
devices, configure electronics, switches, routers and farm nodes (IP addresses,
booting images for the farm nodes and the TELL1 boards, HLT algorithm for
the farm nodes).

2.2.2 Network definitions

To understand better the needs of the DAQ in terms of configuration, some network
concepts and definitions are introduced in the following sections.

2.2.2.1 IP packet and Ethernet frame

The Ethernet protocol [5] acts at the level 2 (Data Link) of the OSI (Open System
Interconnected) Model [6], the IP protocol [7] at level 3 (Network).

Chapter 2 Configuring the LHCb experiment

 77

Figure 34. An IP packet encapsulated in an Ethernet frame.
An IP packet (see Figure 34) encapsulated in an Ethernet frame contains 4 different
addresses, 2 for the sources (IP and MAC) and 2 for the destinations (IP and MAC).
The destination addresses will allow identification whereas source addresses will
allow reply. This means a communication can be established between the source and
the destination. An IP address is coded with 4 bytes whereas a MAC address is coded
with 6 bytes.

MAC addresses are uniquely hard coded and they are uniquely associated with a
Network Interface Card (NIC). IP addresses are attributed using software. The size of
Ethernet data is limited to 1500 bytes. Thus an IP packet may have to be split and sent
in several Ethernet frames.
Broadcast addresses for Ethernet (resp. IP) are FF:FF:FF:FF:FF:FF (resp.
255.255.255.255)
In a network, equipment is identified both by IP and MAC addresses.

2.2.2.2 Hosts

Hosts are network equipment which can process data. TELL1 boards, PCs, which are
respectively the sources and the destinations in the DAQ, are hosts as they build IP
messages. Switches, routers are not hosts as they transfer the data. They do not build
IP messages to send information.

2.2.2.3 Address Resolution Protocol (ARP)

ARP [8] is used to retrieve the MAC address of a given IP address. Referring to
Figure 35, station A wants to send an IP message to station B. A knows the IP address
of B but not its MAC address. It will broadcast an ARP request3 for the IP address
194.15.6.14 to all the stations. Only B will respond by sending its MAC address. So A
can send message to B.

3 An ARP request consists of an Ethernet frame, with FF:FF:FF:FF:FF:FF and type=ARP

Chapter 2 Configuring the LHCb experiment

 78

Figure 35.Illustration of the ARP protocol. The schema 1 shows station A which sends an ARP
request to all the stations to get the MAC address corresponding to the IP address “194.15.6.14”.
The schema 2 shows that the station B answers to the station B because the ARP request was for
him. It has the IP address “194.15.6.14”. Shading means that the element is not active.

2.2.2.4 Subnet and IP Subnet

A subnet is a part of a network which shares a common address prefix. Dividing a
network into subnets is useful for both security and performance reasons.

An IP subnet is an ensemble of devices that have the same IP address prefix. For
example, all devices with an IP address that starts with 160.187.156 are part of the
same IP subnet. This prefix is called the subnet mask.

2.2.2.5 Network Gateway device

A network gateway allows communication between two subnets (IP, Ethernet, etc.). A
network gateway can be implemented completely in software, completely in
hardware, or as a combination of the two. Depending on their implementation,
network gateways can operate at any level of the OSI model from application
protocols (layer 7) to Physical (layer 1).
In the case of an IP network, the gateway is usually a router. Its IP address is known
by all the stations (PCs) of a same subnet.

2.2.2.6 IP routing (over Ethernet)

Routing is used when a station wants to send an IP message to a station which is not
on the same subnet.

Chapter 2 Configuring the LHCb experiment

 79

Figure 36. An example of IP routing.

Station A wants to send an IP message to station B. First A looks at the IP address of
B. Referring to Figure 36, A is part of subnet 123.123.121 and B is part of subnet
123.123.191. Stations A and B are not in the same subnet. So A will send an IP packet
to the gateway (Switch 1). A needs the MAC address of the gateway to build the
Ethernet frame. A will look for the MAC address associated with 123.123.121.1 (IP
address of the gateway) in its ARP cache. If it is not found, A does an ARP request
for the MAC address of the gateway.

Then A sends the IP message to switch1. Switch1 examines the packet, and look for
the destination address (123.123.191.15) in its routing table (see next definition). If it
finds an exact match, it forwards the packet to an address associated with that entry in
the table. If the router does not find a match, it runs through the table again, this time
looking for a match on just the subnet part (in the example 123.123.191) of the
address. Again, if a match is found, the packet is sent to the address associated with
that entry. If not, it uses the default route if it exists. Otherwise it sends a “host
unreachable” to the source.

In the example, Switch 1 will forward the message to Switch 3 via its Port 3.
However, it needs to know the MAC address associated with the IP address of the
next hop equals to 123.123.191.76 (found using its routing table) to build the Ethernet
frame. It will look for it in its ARP cache. If there is no matching entry, it sends an
ARP request.

Then Switch 1 forwards the message to Switch 3. It examines the destination address
in the same way as Switch 1. Finally, the message arrives to B.

Chapter 2 Configuring the LHCb experiment

 80

It is important to notice that the IP destination address of the message does not change
during routing, unlike the destination MAC address. It is changed by the routers
because it is the MAC address of the next hop.

2.2.2.7 IP routing table

An IP routing table is a table located in a router or any equipment which does routing.
It is composed of several entries such as (we quote the most important ones):

• IP address of a destination (if it is equal to 0.0.0.0, it is the default route)

• Port number (of the router to forward the packet to)

• IP address of the next hop (if it corresponds to the destination address, it is
equal to 0.0.0.0)

• Subnet mask of the next hop.

Figure 37 shows an extract of the IP routing table of switch 1.

Figure 37. An excerpt of the IP routing table of switch 1 (only the most important entries).

An IP routing must be consistent, i.e., the route to a destination must be uniquely
defined if it exists in the routing table. So a destination address must appear only once
in the routing table.
An IP routing table can be static, i.e. programmed and maintained by a user (network
administrator usually).

Dynamic routing is more complicated and implies many broadcast packets. A router
builds up its table using routing protocols such as RIP (Routing Information Protocol)
[9], Open Shortest Path First (OSPF) [10]. Routes are updated periodically in
response to traffic conditions and availability of a route.

2.2.2.8 Dynamic Host Configuration Protocol (DHCP)

This protocol allows a host which connects to the network to dynamically obtain its
network configuration.

The DHCP server [11] will attribute an IP address, an IP name, a boot image location
(set of files which will allow the host to get its configuration) to the newly connected
host.

Chapter 2 Configuring the LHCb experiment

 81

When a host starts up, it has no network configuration. It will send a
DHCPDISCOVER message (special broadcast with IP destination equals to
255.255.255.255) to know where the DHCP servers are located. The DHCP server
will respond by a DHCPOFFER (also a broadcast message as the host may not have
an IP address) which suggests an IP address to the host (DHCP client). The host sends
a DHCPREQUEST to accept the IP address. The DHCP server sends a DHCPACK to
acknowledge the attribution.

The DHCP server can dynamically attribute an IP address or statically or both. It is
fixed by the network administrator. If the address is attributed dynamically, it will be
valid for a certain period. Moreover in the case of a dynamic attribution, it can take
time or even fail (if all IP addresses are taken).

In case of a static attribution, the DHCP server has a dhcp config file defined by the
network administrator which looks like Figure 38.

Figure 38. Example of DHCP config file.

When a host sends a DHCPDISCOVER message, the DHCP server will look for the
entry associated with the MAC address of the host in the dhcp config file which will
contain all the information namely (referring to Figure 38):

• IP address which corresponds to the fixed-address information (which is
static, always valid);

• IP name of the host which corresponds to host pclbcc02;

Chapter 2 Configuring the LHCb experiment

 82

• IP address of the gateway which corresponds to option routers;

• IP address of the tftp-server given by server-name (from where to load the
boot image);

• IP address of the NFS [11] server (to be used as a local disk) which is given by
next-server;

• The boot image name which is given by filename.
At the beginning of the dhcp config file, some generic options are fixed. Options by
IP subnets are inserted afterwards. Then groups are defined. A group is a set of hosts
which have the same filename and server-name.

2.2.2.9 Domain Name System

A PC connected to Internet has at least one IP address and is part of a domain (for
instance a CERN PC is part of the domain “cern.ch”). Working with IP addresses is
not always very convenient. Associated with an IP address, a PC has also a host (or
IP) name and aliases (optional).

A DNS server [11] is responsible of one specific domain. It performs the two
following tasks:

• Given a host name, retrieve the IP address;

• Given an IP address, retrieve the host name and aliases if any (it is called
reverse resolution). A DNS can distinguish between a host name and aliases as
the host name is declared as the main one.

The DNS system helps in finding to which server a given URL (which corresponds to
an IP name or an alias) points. It is organized as a hierarchy of PCs. For instance, a
user wants to view the content of the URL www.wanadoo.fr. The PC sends a DNS
query to search for www.wanadoo.fr. This query goes to the ISP (Internet Service
Provider) DNS server (at home) or in the context of LHCb or other companies, the
DNS server. If it knows the IP address (because it is already in the cache), it sends
back the IP address. Otherwise it forwards it to the root DNS server. The root DNS
server finds the URL is part of “.fr”, it returns the IP addresses of the DNS servers
(they are called the top level) responsible for the “.fr” domain, to the DNS server (the
first one). Then it sends a request to one of the given DNS server responsible for “.fr”,
which sends back the IP address of the “wanadoo.fr” domain. As this URL was new,
the first DNS adds it into its cache so next time, it will be able to send back the IP
address of www.wanadoo.fr” immediately. In this example, we have stopped here
because the IP address has been found. However if there are more sub-domains, we
reiterate the previous process. If the IP address could not be found, we get an error,
such as “Page could not be found”. This mechanism is illustrated by Figure 39.

Chapter 2 Configuring the LHCb experiment

 83

Figure 39. Principles of the DNS mechanism.

In the LHCb, there will be one disconnected domain (ecs.lhcb) and one authoritative
DNS server with two other DNS servers, one which will be responsible for the DAQ
equipment on the surface and another which will be responsible for the DAQ
equipment in the cavern (underground).

Configuring a DNS server consists of providing two types of files.

• The forwarding file gives the IP address of a given host name. An example of
this type of file is shown below:
$TTL 86400
name of the domain “.” is important name of the
DNS server
ecs.lhcb. IN SOA dns01.ecs.lhcb.
root.localhost. (
#some generic options
 200607130 ; serial
 3h ; refresh
 3600 ; retry
 4w ; expire
 3600 ; ttl
)

the given domain is supervised by this dns server if there
are several we # add the same line with the other names of dns
ecs.lhcb. IN NS dns01.ecs.lhcb.

#name of the host without the “.” and the corresponding IP
address
dns01 IN A 10.128.1.1

sw-sx-01 IN A 10.128.1.254
sw-ux-01 IN A 10.130.1.254

time01 is an alias to dns01 (main name)
time01 IN CNAME dns01

slcmirror01 IN A 10.128.1.100

ag01 IN A 10.128.2.1

Chapter 2 Configuring the LHCb experiment

 84

time02 IN CNAME ag01

srv01 IN A 10.128.1.2

pc01 IN A 10.130.1.10
pc01-ipmi IN A 10.131.1.10
pc02 IN A 10.130.1.11
pc02-ipmi IN A 10.131.1.11

dns01-ipmi IN A 10.129.1.1

slcmirror01-ipmi IN A 10.129.1.100

ag01-ipmi IN A 10.129.2.1

There following naming convention applies: the host name must be written
without the domain name as it is appended automatically.

So if a machine has the following host name pclbtest45.ecs.lhcb, it has to be
written as pclbtest45 and it should be followed by IN (internet) and then by A
for Address if it is an IP address. For aliases, we give the alias name followed
by IN then CNAME (canonical name) and finally the host name.

• The second type of file is the reverse resolver. It looks like as follows:
$TTL 86400
IP address of the zone name of the dns
responsible
128.10.in-addr.arpa. IN SOA dns01.ecs.lhcb.
root.localhost. (
 200607130 ; serial
 3h ; refresh
 3600 ; retry
 4w ; expire
 3600 ; ttl
)

128.10.in-addr.arpa. IN NS dns01.ecs.lhcb.

part of the IP address full host name
254.1 IN PTR sw-sx-01.ecs.lhcb.

1.1 IN PTR dns01.ecs.lhcb.
2.1 IN PTR srv01.ecs.lhcb.

100.1 IN PTR slcmirror01.ecs.lhcb.

1.2 IN PTR ag01.ecs.lhcb.

In this type of file, the IP address is not written fully. In fact, an IP address is
read from right to left and we delete the two last numbers. For instance, a PC
has the following IP address, 123.45.67.89, the DNS reads it as 89.67.45.123.
The IP address which specifies the zone is 123.45, so it becomes 45.123 when
it is reverted. We take them off from 89.67.45.123, it remains 89.67 only.
There should not be a dot at the end so that the IP address of the zone is
automatically appended.

For the host name, the full name should be given and the dot should be added
so that nothing will be appended to it.

Chapter 2 Configuring the LHCb experiment

 85

In the LHCb network, it is foreseen to have one file per subnet and we have 4 subnets
(two for the surface and two for the underground). They need to have an autonomic
tool which automatically generates these files because it is tedious to write them
manually (there are a lot of entries).

2.2.3 Network configuration

The network equipment in the DAQ network (routers, switches etc.) requires a
specific configuration which is related to the connectivity.

Routing tables of switches will be configured statically for two reasons.

• Data paths should be deterministic, i.e. the routing path taken by a packet from
a given TELL1 board to an EFF node should be known.

• It will avoid overloading the network with lots of broadcastings. As we have
seen before, dynamic routing consists of many broadcast messages.

The ARP cache for the TELL1s, the EFF PCs and switches will be filled to reduce the
number of broadcast messages.

Routing tables and ARP caches will be built using the information stored in the CIC
DB.
The DAQ network structure will be similar to Figure 36. Station A will be a TELL1
board. There will be around 343 TELL1 boards connected to the core switch (Switch
1 in Figure 36). Switch 2 and Switch 3 will be distribution switches. Stations B and C
will be Trigger Farm PCs. Each Sub-Farm will constitute an IP subnet.

In the DAQ system, IP attribution will be static to avoid any problems or time wasted
at start up. The dhcp config file and DNS files will be generated using the information
stored in the CIC DB.

Besides the network configuration, each port of a switch will have some configurable
parameters such as speed, status, port type, etc. PCs will have some parameters such
as the promiscuous mode, that is, Ethernet frames normally go to the above network
layers only if they are addressed to that network interface. If a PC is put in the
promiscuous mode, the Ethernet network interface (of the PC) will send all the frames
(frames addressed to any host in the network), regardless of their destination address
to the above network layers. It can be used to check that the network is properly
configured.

All this information will be stored in the CIC DB.

For the DAQ, autonomic tools will be used to generate and update routing and
destination tables. They will also be used to generate the DHCP config file and the
DNS files. They are very convenient as there are a lot of PCs, switches and TELL1
boards which will get an IP address. Moreover an error in a routing table or in the
DHCP config file or in the DNS system can mess up the network. Having automated
tools which can fulfil this kind of task is very useful.

2.3 Configuring partitions for the TFC

Another concept which involves connectivity is partitioning from the TFC system
point of view. A partition is the ensemble of modules of subsystems (or part of a
subsystem) which will take data.

Chapter 2 Configuring the LHCb experiment

 86

2.3.1 Impact on the TFC system

At the beginning of a new activity or run, the shift operator defines a partition.

In order to support a fully partitionable system, the TFC mastership has been
centralized in one module: the Readout Supervisor. The architecture contains a pool
of Readout Supervisors, one of which is used for global data acquisition. For separate
local runs of sub-systems a programmable patch panel, the TFC Switch, allows
associating sub-systems to different optional Readout Supervisors. They may thus be
configured to sustain completely different timing, triggering, and control. The TFC
Switch distributes in parallel the information from the Readout Supervisors to the
Front-End electronics of the different sub-systems.

2.3.2 Programming the TFC switch

The TFC Switch incorporates a 16x16 switch fabric. Each output drives one
subdetector such as RICH1, RICH2, VELO, etc, and each input is connected to a
separate Readout Supervisor. In other words, it means that all the TELL1 boards
which are part of a same subdetector will be driven by the same output of the TFC
Switch. This switch is programmed according to the selected partition.

Let us consider the following example. The shift operator chooses VELO, RICH1 and
RICH2 as a partition.

Programming the TFC Switch consists of two steps:

• Find the output ports which are connected to the subsystems in the partition
(VELO, RICH1 and RICH2 in the example).

• Find the input port which is connected to the selected Readout Supervisor
(usually the first free Readout Supervisor is chosen).

Figure 40 illustrates the concept. The Readout Supervisor 1 has been selected to
control the partition {VELO, RICH1, RICH2}. Red components mean that they are
used for the data taking.

Chapter 2 Configuring the LHCb experiment

 87

Figure 40. Handling the partition in the TFC system (first step).

Then using this information, the TFC switch is programmed as shown in Figure 41
(links in green).

Figure 41. The TFC internal connectivity (second step).

Last of all the Readout Supervisor is configured according to the specific activity.

2.3.3 Subsystems from the FSM view

In Chapter 1, we have explained that from the controls point of view, the LHCb
experiment will be modelled as a hierarchy and its behaviour and its states will be
implemented using a FSM. Subsystems can be selected by clicking on them from a
PVSS panel. Another panel will show up and displaying the decomposition of this
subsystem. For instance, clicking on VELO will pop up another panel showing that
the VELO is split into two parts, VELO_A and VELO_C. This principle is iterative,

Chapter 2 Configuring the LHCb experiment

 88

i.e., by clicking on VELO_C, its different parts appear. It stops when displaying the
electronics modules.

2.3.4 Subsystems from the TFC view

Using the FSM view, the shift operator can define a partition with half of the devices
of VELO_A and another partition with other half of devices of VELO_A.

Although theoretically possible, this cannot work. The granularity of the parallel
partitions is fixed by the TFC system, especially by the number of outputs of the TFC
switch. In section 2.3.2 Programming the TFC switch, we have seen that the readout
supervisor is responsible for one partition. And via an output port of the TFC switch,
it sends the signal to a set of electronics module part of a certain ensemble of a
subsystem. This “certain ensemble” is the limit of parallel partitioning. In other
words, this “certain ensemble” cannot be split into several parts to form different
partitions. For instance, referring to Table 4, two parallel partitions can be defined out
of the VELO, one consisting of the electronics module of the VELO_A and another
one consisting of the electronics module of VELO_C. But it is not possible for
instance to have one partition with electronics modules of half of the RICH1 and
another partition with electronics modules of the other half of the RICH1 as they are
driven by the same TFC output port.

Subsystem name (as
displayed to the user in the
FSM top view)

Subsystem name in the TFC
(defines an upper limit on the
number of simultaneous
partitions)

VELO VELO_A and VELO_C
L0TRIGGER PUS, L0CALO, L0MUON,

L0DU
RICH RICH1 and RICH2
ST IT and TT
OT OT
ECAL ECAL
HCAL HCAL
PR/SPD PR/SPD
MUON MUON_A and MUON_B

Table 4. Subsystem names and their decomposition.

2.4 Equipment management

The LHCb detector will be used to take data over years. Equipment will be swapped,
replaced, etc.

To allow the detector to run in the best conditions, an inventory of the equipment and
tracing back each replaceable device is essential. Also it should be possible to
reproduce the configuration that a detector had at a given time.

The time reference for the device history is when a device arrives at LHCb.

2.4.1 Device status

Chapter 2 Configuring the LHCb experiment

 89

Each device (included replaceable device components such as a chip) has a status and
a location which can evolve with the time. For instance a device can be a spare, in
use. Also it can be in repair or even destroyed. In some cases, it can be taken out for
test purposes. The full list of statuses will be explained in detail in the next chapter.

2.4.2 Allowed transitions of status

Transitions between one status and another one must be clearly specified. It is quite
intuitive that if a device is destroyed, it cannot be used any longer. So it cannot go to
another status. Another case is when a device fails; it cannot be replaced with a device
which is being repaired. That is why it is very important to define the transitions
associated with the actions which must be performed to ensure data consistency. And
the use of autonomic tools is very helpful in equipment management as it is easy to
make mistakes.

2.4.3 Inventory

The inventory consists of:

• Sorting devices per status at a given time. It means at time T, one should be
able to know where the device is and what status it has.

• Updating the status of the device and making the necessary changes associated
to the status change. It is important to keep consistency in the database. For
example, if a device breaks, it will be replaced by a spare. So the status of the
broken device changes and goes to something like “being repaired”. And the
spare which replaces it, is no longer a spare and goes to something like “is
being used”. Also it is important to update the statuses of the components of a
device in a consistent way. If a device breaks and needs to be repaired, its
status is IN_REPAIR. Its components will also be IN_REPAIR.

2.5 Fault detection and verification of the correctness

The commissioning phase is an important step during the installation of the detector.
During this phase, all the electronics modules are tested and certified to work properly
when they are integrated with each other.

2.5.1 Verifying the configuration of the modules

It is important to check that devices are configured properly. To achieve this, the
following policy has been applied at LHCb. The different steps have been presented
in Figure 42. There is an automatic read-back mechanism of the values written in the
hardware using DIM. If the device is properly configured, it goes to state READY, if
not it goes to state ERROR. Then the FSM will try to recover the system. In the
future, when the LHCb detector is fully operational, some automatic recovery actions
will be taken based on the type of errors. The set of tools that come along with the
CIC DB allows building an autonomic control system. For instance, the FSM can get
the history of a faulty module to check if this kind of failure already occurs and
consequently react properly.

Chapter 2 Configuring the LHCb experiment

 90

Figure 42. Checking that the device is properly configured.

2.5.2 Tests of links

2.5.2.1 Issues

LHCb is a big collaboration of several European institutes. Each member contributes
in building and implementing part of the LHCb equipment. Integration and
installation of all the pieces will begin at CERN. All the different electronics will be
connected together. During this phase, connectivity needs to be tested. Typically it
means that the electronics people want to know:

• Referring to Figure 33, a HCAL_PMT should send a data signal to a HCAL_DAC
board. Get all the electronics devices between a given HCAL_PMT and a given
HCAL_DAC to determine which one(s) can be faulty.

• A board A should receive data from a board of type VELO_TELL1. Get all the
paths (in details) between board A and boards which are of type VELO_TELL1.

• Referring to Figure 43, GOL1 (Gigabit Optical Link, it’s an optical driver) sends
data to which FPGA(s).

Figure 43. Example of internal connectivity.

2.5.2.2 Macroscopic and microscopic connectivity

Chapter 2 Configuring the LHCb experiment

 91

From the previous examples, we can see that there are two levels of connectivity:

• Macroscopic connectivity which describes the physical links (wires) between
devices.

• Microscopic connectivity which describes the connectivity of a board itself, i.e.
between board components. For instance, referring to Figure 44, the repeater
board has an internal structure that can be described. It is composed of 4 driver
cards, a LV mezzanine and an ECS mezzanine. The driver card 1 is connected to
j4 of the repeater board on its input and j20 on its output, etc.

In principle, each subsystem will save its own connectivity at the macroscopic level.
In total there will be roughly one million macroscopic links.

Connectivity of a board, i.e. microscopic connectivity will be saved if necessary,
depending on the use cases.

Chapter 2 Configuring the LHCb experiment

 92

Figure 44. An slice of the VELO connectivity, from a hybrid module to the TELL1 board. On the
right, there is the internal dataflow of the repeater board.

2.5.2.3 Internal connectivity of a board

The internal connectivity of a board consists of describing the output ports which can
receive data from a given input port of a device due to an architecture constraint (it is
fixed). In most cases, in LHCb, there is no need to store the internal connectivity of a
device if the latter does not contain a microscopic component. For instance, the
internal connectivity of the TFC switch or a DAQ router is set dynamically using
destination or routing tables. In principles any input can send data to any output ports.
However, there are some devices which have a special connectivity.

Chapter 2 Configuring the LHCb experiment

 93

Figure 45. The internal connectivity of the feedthrough flange.

Figure 45 shows the internal connectivity of the VELO feedthrough flange. It is also
shown in Figure 44. A signal coming at the input 1 of the feedthrough flange can only
go out from the output 1.

So the combinations (input, output) of this device are not all valid. There is a need in
that case to store the internal connectivity so that we do not get paths between the
Long kapton A and the input port 4 of the repeater board.

2.6 Performance measurements

The following performance measurements were carried out using benchmarks (we
focus on the configuration software):

• The maximum number of electronics that a controls PC can configure;

• The best architecture in terms of building the hierarchy of controls PCs;

• The best representation of a type of information in the CIC DB in terms of
execution time (for requests);

• The fastest function implementation in the CIC_DB_lib;

• The upper limit of concurrent users to the CIC DB without affecting the
performance.

2.7 Conclusion

In this chapter, we have described the different steps needed to configure a detector. It
is quite a complex procedure as there are a lot of electronics modules of different
types to be represented. Also connectivity and configuration parameters have to be
related to configure devices such as for the Calorimeters.

Since the modules are built from different places, there is also a need to verify and
test the integration of all the modules. The detector has a long lifetime and its
equipment should be maintained. It requires an inventory and storing the history of
devices.

All the information related to configuration, connectivity and history/inventory of
devices will be modelled in the LHCb CIC DB, considered as a central repository of
information about the detector.

Chapter 2 Configuring the LHCb experiment

 94

Errors or user mistakes can be easily made. A policy of implementation has been
applied to verify that a device is properly configured based on an automatic read-back
hardware values mechanism. For example, a user can forget to update the connectivity
of a device if the latter fails. Or if a link breaks in the DAQ network, one has to
manually change the routing tables of switches. Beside as there are thousands of links
and hundreds of switches, it implies a lot for work to update all this information.
Performing all these operations manually is tedious and bound to errors. Thus the
tools developed must be as much autonomic as possible. This is the guideline which
has been adopted by the LHCb Computing group.

Chapter 2 Configuring the LHCb experiment

 95

References

[1] IBM Research, An architectural blueprint for autonomic computing, White Paper.
Available: http://www-03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf.

[2] A. Braem, E. Chesi, F. Filthaut, A. Go, C. Joram, J.Séguinot, P. Weilhammer1) and
T. Ypsilantis, The Pad HPD as photodetector of the LHCb RICH detectors. LHCb
Note, October 1999. LHCb 2000-063 RICH.

[3] LHCb Collaboration, LHCb Vertex Locator Technical Design Report.
CERN/LHCC 2001-0011, LHCb TDR 5, May 31th 2001.

[4] LHCb Collaboration, LHCb Calorimeters Technical Design Report.
CERN-LHCC-2000-036, LHCb TDR 2, September, 2000.

[5] Ethernet Protocol IEEE 802.3. Carrier sense multiple access with collision
detection (CSMA/CD) access method and physical layer specification, 2002.
http://standards.ieee.org/getieee802/download/802.3-2002.pdf.

[6] ISO/IS 10040, Information Technology - Open Systems Interconnection - Systems
Management Overview, August 1991.

[7] Internet Protocol, DARPA INTERNET PROGRAM PROTOCOL
SPECIFICATION, RFC 791, September 1981. http://www.ietf.org/rfc/rfc0791.txt.

[8] An Ethernet Address Resolution Protocol, RFC 826, November 1982.
http://www.ietf.org/rfc/rfc0826.txt.

[9] Routing Information Protocol, RFC 1058, June 1988.
http://www.ietf.org/rfc/rfc1058.txt.

[10] OSPF Version 2, July 1991.http://www.ietf.org/rfc/rfc1247.txt.

[11] Douglas E. Comer., Internetworking with TCP/IP, Vol I: Principles, Protocols
and Architecture Third Edition, Upper Sadler River, New Jersey: Ed. PRINTICE
HALL, 1995. 613 p.

Chapter 3 Software architecture

 96

Chapter 3 Software architecture

In chapter 1, section 1.3.1, the ECS software architecture has been described. In this
chapter, we will focus on the implementation of the CIC DB and its tools, which are
the part of the ECS architecture responsible for configuring the experiment.

First, this chapter presents an overview of the software architecture that has been built
and integrated in the ECS software architecture. It is a 3-Tier architecture, with a
database, object and GUI layers. Secondly, we describe the three layers. Then we
explain the importance of the API in building autonomics tools. Finally, we discuss
the choice of such an architecture.

3.1 Outline of the architecture

Figure 46. Software architecture.

Figure 46 represents the 3-Tier architecture which has been implemented to handle
the configuration issues for the ECS. The 3-Tier architecture has the advantage to be
robust and scalable. Changes on one of these layers do not affect the others unless a
complete modification in the table design or in the API is made.
The next section explains the 3 layers in more detail.

The GUI layer, via PVSS panels, allows the integration within the ECS system.
The aim of this architecture is to provide the following features:

• Provide a database schema which is complete so that the ECS can find all the
 information required to configure the equipment properly namely configuration
 settings, connectivity of a device and history/inventory of the hardware;

• Provide a database schema which caters for the whole experiment to permit to
reduce the number of tools to be implemented and to make the software
maintenance easier;

Chapter 3 Software architecture

 97

• Provide an efficient schema and a fast PVSS CIC DB interface to allow loading
the configuration of all the equipment in less than one minute;

• Provide a set of adaptive and autonomic tools to allow reliable and consistent
manipulation (insertion, query, update and of the data by non-expert DB users;

• Provide a graphical tool to allow navigation through the content of the CIC DB to
permit fault detection or inconsistencies in the database.

3.2 Description of the 3-Tier architecture

3.2.1 Database layer

All the information regarding configuration will be saved in one single relational
database, the CIC DB. It is implemented using Oracle technology. The database
consists of two parts:

• A common part for the 4 experiments at the LHC, which contain information
about configuration parameters of devices and the hierarchy of devices. The
schema and PL/SQL scripts for this part are provided by the CERN PVSS
Support group. To make their design, they have obtained use cases and
requirements from the 4 experiments [1].

• A part specific to the LHCb experiment which contains the connectivity of the
subsystems and history/inventory information. The design has been done as part
of my thesis. The methodology applied is described in the next chapter. It consists
of identifying the users, collecting the requirements and use cases and building
the schema using the ERM. This part contains PL/SQL codes too. There is one
PL/SQL package (routingtable_pck) which generates and updates routing and
destination tables. A set of some PL/SQL functions which were used when the
SQL queries were too complex (especially regarding equipment management). As
mentioned in the previous chapter, the DAQ is composed of thousands of items.
The PL/SQL applications (such as routingtable_pck) help in building an
autonomic control system by automated some steps further to a change in the
content of the database.

To ensure consistency between the two parts (common part and LHCb specific part),
the name of the modules should be the same. Guidelines and presentations have been
given to make the LHCb collaboration aware of this constraint, which is very
intuitive. Apart from the name of the modules, the two parts contain disjoint
information so there is no need of a communication between the two parts.

The database schema of both parts is described in Chapter 5. The implementation of
the PL/SQL package to create the routing and destination tables and other PL/SQL
codes is described in Chapter 6.

3.2.2 Object layer

This layer is the core of the 3-Tier architecture as it links the two other layers. It has
knowledge of the runtime values and is aware of the database structure.

The object layer is composed of three parts (referring to Figure 46):

• The PVSS scripts provided by the CERN PVSS Support group which allow
manipulating data related to the configuration parameters (saving/loading a

Chapter 3 Software architecture

 98

configuration). It is a PVSS library which communicates with the database layer
via OCI. This tool is described succinctly in Chapter 7.

• The CIC_DB_lib is a C-library which uses OCI as a DB interface and which
provides autonomics features by reducing the human intervention. This library
consists of a set of functions which permits to insert, select, delete and update
information related to the connectivity and inventory/history in a consistent and
secure manner. It is based on an API which corresponds to the needs (use cases
and requirements) of the CIC DB users. Some of the functions embed PL/SQL
functions. Two bindings have been implemented, one in Python using BOOST
and one in PVSS using the GEH (Generic External Handler). This library has
been implemented according to the autonomics principles. It should be robust
against input errors and smart by reducing human intervention. The detailed
implementation of the CIC_DB_lib and its two bindings is explained in Chapter
7.

• The Perl scripts which create the DHCP config file and the DNS set of files using
the connectivity information. They communicate with the database layer via
PERL DBI [2]. These two scripts also take part in building an autonomic control
system by dynamically creating the files. The structure of these 2 scripts is
described in Chapter 7.

The two last items were part of my work, as they are specific to LHCb.

3.2.3 GUI layer

This layer displays the data to the users. It is the top layer. It also consists of three
parts:

• The PVSS panels which are designed by the subdetector groups. They use the
functions provided by the PVSS CIC_DB_lib binding and the PVSS scripts
provided by the CERN PVSS Support group. These panels allow configuring and
monitoring one or a hierarchy of devices. Some examples of panels will be given
in Chapter 8.

• The CDBVis graphical editor which allows navigating through the content of the
CIC DB (connectivity essentially). It uses the Python CIC_DB_lib binding. This
tool enables the users to insert and to view their connectivity. It uses wxPython
[3] as python graphical module. The outline of CDBVis is given in Chapter 8.

• DHCP and DNS files which are the output of the Perl scripts. This set of
configuration files allows verifying that the content of the database is not
incoherent. They have been generated using XSLT [4].

3.3 The API

One essential step in implementing this architecture is defining an API which should
be complete so that all the users of the CIC DB can save and retrieve the information
needed. To achieve to build a complete API, a list of use cases has been written down
and has been presented for validation. The API permits to the user to communicate
with the CIC DB without any knowledge of the database schema and SQL or PL/SQL
language.

The main problem was the timescale. The subdetectors did not have a clear view of
their use at the same time as some of them experienced delays in the productions of

Chapter 3 Software architecture

 99

their electronics modules. So the content of the API has been extended over the
months.

3.4 Choice of the languages

In this section, the different choices of the languages and technologies used to build
the three layers are discussed.

3.4.1 Oracle and PL/SQL

The CIC DB is an Oracle database because there was a strategic decision by LHCb to
use Oracle for all its database. This simplifies maintenance and the required expertise
inside the experiment. As there is a HEP wide Oracle license, outside users can do
their development without extra costs. The alternative would have been mySQL but
the range of tools and features is limited compared to Oracle and the two products are
not compatible.

For efficiency reasons, PL/SQL has been used to embed complex SQL queries to
avoid transferring long statements through the network. It has been also used to
generate and create the routing and destination tables because all the SQL executions
are performed on the server-side. Thus it avoids loading information from the
database, processing them to generate routing and destination tables in the client-side
and putting back the results in the CIC DB.

3.4.2 Use of C and OCI, Python and Perl

At LHCb, C, C++ and Python are the most common languages used. There is no use
of Java.

The CIC_DB_lib had to be implemented in one of these three languages. It had to be
efficient, fast and possible to build a PVSS binding (to be integrated in the ECS).

As the Python DB interface is built on top of OCI, it is clumsy to implement
CIC_DB_lib in Python. Moreover there is no direct way to integrate Python in PVSS,
other than making a binding in C.

So there is C or C++ left for implementing CIC_DB_lib. Building a PVSS and a
Python binding from a C-library is feasible, but building a PVSS binding from a C++-
library would have been tricky as PVSS does not use classes and methods. Moreover
the main inconvenience of building a C++ library is memory management (memory
allocation for classes). Finally OCCI (best DB interface for C++) [4] is built on top of
OCI which is the native DB interface of Oracle so from a performance point of view
OCI is the best Oracle interface.

Thus for all these reasons, CIC_DB_lib has been implemented in C with two bindings
one in Python, and another one in PVSS and it uses OCI as a DB interface. The main
problem to cope with is versioning compatibility, which is explained in Chapter 7.

Another alternative was to use DIM instead of GEH. The input and return values
would be transferred using DIM between PVSS and a CIC_DB DIM server. In fact,
the very first implementation was using DIM to communicate with the CIC DB, but
the implementation based on GEH was faster in our context. So it restricts the access
to the CIC DB to PVSS only.

Chapter 3 Software architecture

 100

Perl has been used to generate the config files because it is a common script language.
They can be triggered from some PVSS panels or called from a C code. Python could
also have been used.

3.4.3 Use of BOOST, XSLT and GEH

The only way to interface a C-library to PVSS is the GEH. The GEH allows
implementing controls libraries. It works both on Linux and on Windows.

To make the Python binding, BOOST has been used. Implementing a Python wrapper
directly would have been painful and hard to maintain as the CIC_DB_lib contains a
lot of functions. Another possible and simpler wrapper would have been SWIG [5].
But I experienced some problems to convert C pointers which were both in-out
parameters in the functions. There is an example in chapter 7. Finally I decided to use
BOOST as it was integrated in the LHCb Offline software environment via Gaudi [6].
BOOST on its own is a powerful application but quite complex. Using it via Gaudi
avoids maintenance problems especially for new versions of BOOST which need to
be recompiled with the Python library. It can then cause some incompatibilities with
the Python version used at LHCb.

XSLT has been used to convert the XML files (produced by the Perl scripts) into
DNS and DHCP config files. The details of this conversion are given in Chapter 8. It
is flexible and offers a wide range of features (the output can be formatted as needed).
As the DNS and DHCP files follow strict syntax containing specific user options, the
XSLT permits to check the syntax of the XML files and to make sure that the user
does not provide incompatible options.

3.5 Conclusion

This chapter describes the software architecture implemented to handle configuration.
It is 3-Tier architecture. The top layer (via PVSS) ensures the integration within the
ECS architecture. The third layer consists of the CIC DB as a database is a persistent
technology to store data. The second layer which is the bridge between the two
previous offers libraries to manipulate the data in the CIC DB according to the users’
needs.

The architecture has been designed and implemented to help the LHCb ECS to be an
autonomic system by reducing the human intervention and automated steps further to
a change in the content of the CIC DB.

To make the design of the three layers properly, identifying the users of the CIC DB,
collecting the requirements and use cases are essential and will be explained in the
next chapter.

Chapter 3 Software architecture

 101

References

[1] JCOP Framework, Configuration Database Tool, User and Development Guide,
June 2004.

http://itcobe.web.cern.ch/itcobe/Projects/Framework/Download/Components/Configu
ration/fwConfigurationDBUserDevelopmentGuide.pdf.

[2] Perl DBI, http://dbi.perl.org/.

[3] wxPython module, http://www.wxpython.org/.

[4] XSLT, http://www.w3.org/TR/xslt.

[5] ORACLE. OCCI (Oracle C++ Call Interface) Programmer’s Guide, 10g Release 2
(10.2). ORACLE PRESS, OSBORNE, December 2005, B14294-02, 474p.

[6] SWIG, http://www.swig.org/.

[7] P. Mato et al. GAUDI: Architecture Design Document. LHCb 98-064 COMP.

Chapter 4 Requirements and use cases

 102

Chapter 4 Requirements and use cases

This chapter presents the approach adopted for configuring the detector. First, we explain the
methodology applied to build the 3 Tier architecture mentioned in the previous chapter.
Secondly we present the requirements. Thirdly we describe the use cases collected in the
frame of this project. Collecting requirements and use cases are steps which can be retrieved
in most projects. The aim is to make an efficient and complete table design which should
represent the information needed to configure the detector into the LHCb CIC DB. It also
gives the outline of the tools which need to be implemented, namely it helps in developing a
complete API.

4.1 Methodology

4.1.1 Identifying the users of the CIC DB

The CIC DB will be accessed by different types of users for different purposes. It is essential
to know what kinds of requests these users will perform. Thus, all the users of the CIC DB
must be identified to ensure that the list of requirements and use cases is complete.

Figure 47. The different users of the CIC DB.

Figure 47 shows the different users which will interact with the CIC DB.

Chapter 4 Requirements and use cases

 103

The subdetectors, the TFC and the DAQ need to save the different configurations of their
electronics modules, their readout supervisors and farm PCs. These three groups of users
should also be able to load configurations.

The TFC, DAQ and the subdetectors need to save the connectivity of their system to
configure the TFC switch, to configure the network equipment and to configure some
electronics modules (lookup tables for instance) and to test links. And on the opposite, they
should be able to get the information (routing tables, DHCP config file, destination tables for
the TFC switch, etc.).

The TFC, DAQ and the subdetectors need to save and query information about inventory and
history of devices.

The ECS needs to mix the configuration, connectivity and inventory information. It needs to
identify the devices in a partition, and to find out what configuration parameters with their
values to apply according to the activity. The ECS will also query some connectivity
information and will update information about the status of a device or a link. An update of
the status of a device may occur further to a fault detected by the operators in the control
room via some other tools. The aim of the ECS is to provide a configuration with a single-
click by combining different types of information and a right reaction in case of failures in the
detector. That is why the ECS has to be implemented using autonomics tools.
To permit the different users to interact with the CIC DB, it is also essential to know which
tools/languages they will use to perform their requests. Table 5 shows the results we came up
with (to access databases in LHCb Online environment, C, Python and the PVSS scripting
language are the most common languages).

Users/tools C code Python code PVSS scripts
DAQ Yes Yes Yes
TFC No Yes Yes
Detector Yes Yes Yes
ECS Yes No Yes

Table 5. The list of the CIC DB users and tools/languages used.

4.1.2 Listing the requirements

There are 4 types of requirements to define:

• The common and user specific requirements;

• The requirements for the integration of the project;

• The requirements for the user interfaces;

• The security requirements.

4.1.3 Collecting use cases

In the context of this thesis, a use case or scenario describes how users or applications will
interact with the system. Our definition of use case is not exactly the same as the one used in
UML [1].

Use cases are very helpful to model the information, i.e., configuration, connectivity and
history data. They will answer the following questions:

• What are the entities and their attributes?

• What the relationship between entities?

Chapter 4 Requirements and use cases

 104

• Which is the necessary data for configuration, connectivity and history?
By stepping through a use case, one can check whether the implementation of the system
corresponds to the problems it was supposed to solve. Writing down use cases ensures that the
system to design will be complete.

The next sections will describe the use cases which have been used to model the information
for the database.

4.1.4 Understanding the LHCb environment

There are different types of software and electronics technology which are used. They are
summarized in Table 6 (derived from Chapter 2). They have to be understood to make a an
efficient design and to implement good tools.

Subsystem Technologies (electronics modules +
software)

ECS PVSS and its frameworks (FSM, DIM, etc.),
CCPC, SPECS, etc.

DAQ Gigabit Ethernet, routers, HLT application,
DHCP and DNS servers

TFC Readout supervisors, TFC switch, fan-outs,
Throttle switches.

Subdetectors FPGA, HPDs, R- and Phy- sensors, PMT,
and other boards etc.

Offline BOOST in Gaudi, CVS, CMT
Table 6. Example of electronics modules and software used in LHCb.

4.1.5 Building the CIC DB table schema

The table schema has been built by analyzing the use cases. For each use case, we have
modeled them with ERM diagrams. Some entities appeared in all use cases. Entity attributes
have been defined in such way, that whatever the use case is, all the information can be put in
one of the attributes. In other words, we have listed and grouped the different attributes that
an entity can have.

In some cases, we had to design specific entities for a particular subdetector (essentially for
the DAQ system with the different attributes specific to a switch). Unlike other subdetectors,
the DAQ is a Gigabit network so it requires special settings which will be explained in section
4.3.2. However we tried to minimize the number of specific entities for software maintenance
reasons.

4.1.6 Integrating and developing tools

The users will not type in directly SQL statements to interact with the CIC DB. Some
interfaces will need to be developed so that the users can access and manipulate the
information stored in the CIC DB. It will be achieved by defining a complete API to allow
interacting with the CIC DB without any knowledge of its table schema. The deployment of
these tools (based on the API) should satisfy the requirements about integration, security and
user interfaces.

Chapter 4 Requirements and use cases

 105

4.1.7 Test and validation

The table schema must be validated and all the tools and libraries developed to interact with
the CIC DB must be tested. This includes a check of functionalities by looking back at the
use cases and behavior in case of misuse.

4.2 Requirements

Modeling information in a database and implementing the tools depend a lot on the system
requirements. Some of them (see list below) can be applied to any database schema [2].

4.2.1 Common and user specific requirements for the table schema

4.2.1.1 Completeness and consistency

The table schema must be complete and consistent. The LHCb ECS must be able to retrieve
any information related to detector partitioning, device configuration, connectivity and device
history. Also the information should be stored in a coherent manner by avoiding data
redundancy as much as possible.

Thus it is necessary to specify which type of data should be stored in the CIC DB to satisfy
these requirements.

4.2.1.2 Performance

Techniques to improve performance in reading (resp. in writing) from (resp. in) a database are
different. Thus it is important to determine whether the database will be mainly read, mainly
written or both.

Information retrieval from the CIC DB must be quickly executed. The CIC DB will be used
most of the time in read-only mode as device configurations and connectivity information will
be rather static once the detector will be in the operational phase. For instance, at start up,
around 500,000 devices will have to be configured in 5-10 minutes. To reconfigure the
detector (stopping a run, changing the activity or the partition of the run and starting the
detector again), the 500,000 devices must be configured in less than one minute. It should
take less time as the electronics modules are already powered up. It is similar to stop/start and
log off/log in a computer. The second operation takes less time.

It is important to identify the most frequent requests from the CIC DB to be able to improve
performance. It will also help in building indexes on tables.

It is important to have an idea of the number of simultaneous accesses to the database. It will
have an impact on the physical design of the database (use of RAC –Real Application Cluster-
[3] for instance) and on creating views in the schema. If there are many users which access
the database concurrently, there is a need to provide a high availability. RAC is an Oracle
technology which aims at ensuring availability using a distributed database system. A view is
a selection of the content of one or more tables which fulfill certain conditions.

4.2.1.3 Extensibility

The table schema must be extendable. Requirements may change at a later time. For instance,
for the moment there is no version implemented for connectivity. It means that it is always the

Chapter 4 Requirements and use cases

 106

current connectivity which is stored in the database. If in the future, versioning needs to be
introduced, it should not affect dramatically the table schema. In other words, it should be
possible to easily extend the table schema.

4.2.1.4 Generic schema

Besides the rather general requirements listed above, the table schema must be applicable to
all subdetectors. It means that the representation of the configuration, the connectivity and the
history must cater for all subdetectors despite different types of electronics and different kinds
of connectivity. In other words, the table schema needs to be independent of the subdetector.
This way, one avoids having a table schema per subsystem. The maintenance of the table
schema becomes easier.

4.2.2 Requirements for integration in the LHCb environment

We came up with the following list, after discussing with the LHCb collaboration.

REQ 1: Most of the users are not familiar with databases. There is a need to develop tools
which allow manipulating the data stored in the CIC DB without typing any SQL statements.

REQ 2: As the configuration of electronics modules should be done from PVSS, an interface
to PVSS must be implemented allowing access to the data stored in the CIC DB.

REQ 3: A tool to navigate in the LHCb CIC DB and to view the connectivity needs to be
built. PVSS is not really meant for displaying the connectivity between devices in an
automated and dynamic way as PVSS is not object-oriented. One of the requirements for this
tool is to provide a function which gets all the paths going through a given device and a given
subsystem. So there is a need to store to which subsystem(s) a device belongs.

REQ 4: Tools must be as autonomic as possible, especially at the level of equipment
management. Human intervention should be minimized. For instance, the creation of routing
tables must be automated and intelligent, i.e. if a links breaks, another routing path should be
proposed.

REQ 5: An API must be developed allowing manipulation (query, insertion, update and
delete) of configuration, connectivity and inventory/history information. The bindings of this
API can be used by the tools mentioned in the requirements above.

4.2.3 User interface requirements

REQ 6: User-friendly;

REQ 7: Clear and simple so that it can be used without the intervention of the developer;

REQ 8: Complete by providing the required functionalities.

4.2.4 Security requirements

The LHCb experiment will be installed underground in a cavern. There will be no possibilities
to access the devices of the experiment from outside once the detector starts to operate. The

Chapter 4 Requirements and use cases

 107

computer network will be disconnected from the CERN Intranet. However some authorized
gateway PCs will be accessible from outside as they will have an interface on the CERN
network, in addition to an interface to the LHCb network.

The CIC DB will be installed using Oracle RAC. Back ups will be performed using Oracle
backup features. It will be accessible only from the LHC b network so there are no security
requirements.

4.3 Use Cases

In this section, we list the different use cases for configuration, connectivity and
inventory/history.

Some use cases can appear more than once (they can be used for different purposes).

4.3.1 Recipes

A list of use cases [4] has been written down and given to the CERN PVSS support group as
they are responsible for providing PVSS tools to configure the devices for the LHC
experiments. This group has introduced the concept of recipes meaning a configuration for
one of a set of devices. I took part actively in building the LHCb list of use cases by testing
and evaluating the first prototype. One of the missing features was the possibility to save a
partial recipe, i.e. being able to select some parameters of a device. We list the most important
ones (all these use cases are for PVSS) needed by LHCb:

UC 1: The RICH group has received HPDs. They have started to design the configuration
PHYSICS for the HPD device type. They save this configuration in the CIC DB on October,
22nd 2005 for half of the HPDs. Then they load the configuration PHYSICS and apply the
setting to the half of HPDs it was saved for. They change one parameter and save this
configuration again (same name and same devices) on October, 26th 2005. And they load the
first version (from the 22nd) of the configuration.

UC 2: The VELO group saves a recipe COSMICS for the 88 hybrids (March, 15th 2006).
They load it and apply to it to the devices. They change a few parameters. They save it as
COSMICS_TEST for 44 hybrids.

UC 3: The ECAL group has started to design its local control system using FSM. They save
the current FSM hierarchy (January, 14th 2006). On January; 28th they load this version on
another PC. Then they design and save a recipe CALIBRATIONS for the whole FSM
hierarchy (still January; 28th). They load the recipe CALIBRATIONS for the whole hierarchy
(parameters + values + list of devices part of it).

UC 4: The ECS saves a recipe TEST for the devices part of the whole FSM tree. Then it loads
the recipe TEST for a FSM subtree, and the recipe TEST is applied only to the devices of the
subtree.

UC 5: The IT group has saved a lot of recipes for their devices. They do not remember
exactly what the names are. They look at the list of recipes they already saved.

Chapter 4 Requirements and use cases

 108

UC 6: The HCAL group has installed their equipment and start to design their local control
system. Each channel will be illuminated by two LEDs. For calibrations purposes, they need
to get which LED(s) illuminate the given channel name.

UC 7: The HCAL group has attributed a quantity of light which is used for computations for
links between a channel and a LED. They get the coefficient value for one specific link.

An analysis of these use cases shows that the following requests will be performed against the
CIC DB, from and only from PVSS:

• Save a recipe for one or several devices;

• Save a recipe for a hierarchy of devices;

• Save a hierarchy of devices;

• Save different versions of a recipe;

• Load a recipe of a given version for the devices it was saved for;

• Load a recipe (by default, the last version) for a subtree or a list of devices;

• Load a hierarchy of devices;

• Get the list of recipes for a given subsystem;

• Get the connectivity between two devices;

• Attribute a coefficient to a link;

• Get the light coefficient for a given link (specific to the Calorimeters subdetector).

4.3.2 Networking

In this subsection, we describe the use cases related to the DAQ network configuration.

UC 8: The DAQ group has set up their controls and data networks. They want to have static
routing tables for performances and debugging reasons. They program the routing tables of
the hundreds of routers by selecting the shortest path. They also configure the speed and the
phy parameter (type of cable used, three possible values { "SX","T","SL"}) of their switches.

UC 9: The DAQ group configures their DHCP and DNS servers according to their set up.

UC 10: One PC in the DAQ farm is down. They want to get information about the device type
(number of interfaces, description). They also disable the PC and update the routing tables for
the routers affected by this failure. They also update the DHCP config file and the DNS files.

UC 11: Extra PCs have been added in the farm. For all of them, they enable the promiscuous
mode and set which interface is used for booting, also called pxi_booting port. They update
the routing tables, the dhcp config file and the DNS files.

UC 12: The DAQ group finds that a TELL1 board behaves strangely. They get some
information about this board and its interfaces such as name, location, IP and MAC addresses,
serial number, bia (burnt internal address), IP aliases. They also want to disable its two data
network interfaces.

UC 13: The DAQ network includes several DHCP servers. They do not remember their
location. They get the list of DHCP server names and their respective location. Then they

Chapter 4 Requirements and use cases

 109

disable three links between switch A and switch B and update the routing table and the DHCP
config files, because they want to make some measurement performance.

UC 14: The DAQ group gets the list of IP aliases for a given PC in the farm.

UC 15: Part of the DAQ equipment is used to extend cables (patch panels for instance). They
do not want to store it as equipment but they need to know if a link is one long cable or
several short cables connected via patch panels.

UC 16: The DAQ group has implemented a Flower topology in 2003. In 2005, the price of
switches and routers became cheaper. They could afford to buy the Force Ten router. They
defined a new topology. They want to only keep the current design in the database.

For the use cases UC 8 to UC 12, the DAQ group wants to use autonomic tools as it is quite
tedious and bound to mistakes to do all these operations manually.

From these use cases, the following requests are derived:

• Generate the routing tables for the DAQ routers;

• Generate the DHCP config file;

• Generate the DNS files;

• Update the routing tables when there is a change in the set up (new PCs added, a PC
breaks);

• Update the DHCP config file;

• Update the DNS files;

• Get information about a device and its interfaces;

• Get the list of IP aliases for a given device;

• Get the list of devices which fulfills a specific task (DHCP, DNS server);

• Insert the connectivity of the system;

• Add information about a link;

• Delete the connectivity of the system.

4.3.3 Partitioning

The partitioning affects the TFC system. The three following use cases have been collected.

UC 17: The shift operator has defined the following partition {ST, VELO, L0 TRIGGER,
ECAL}. The TFC switch is configured accordingly.

UC 18: The TFC group has received 2 extra readout supervisors. They get the current list of
readout supervisors. They check to which inputs of the TFC switch they are connected. They
install and connect the two extra ones.

UC 19: The shift operator selects a region of one station in MUON subsystem as partition for
debugging reasons. The TFC sends the clock to this group of devices.

The requests which come up are as follows:

Chapter 4 Requirements and use cases

 110

• Program the TFC switch according to the partition, i.e. to which outputs of the TFC
switch these subsystems {ST, VELO, L0 TRIGGER, ECAL} are connected;

• Get the list of devices of a given type;

• Get the input or output connectivity of a device;

• Get the output port of the TFC switch which sends signal to a group of electronics
module.

4.3.4 Equipment management

4.3.4.1 Scenarios

This subsection gives a list of the use cases related to equipment management:

UC 20: The VELO group has received 30 spare hybrids. They named them from
spare_hybrid_01 to spare_hyrbid_30. They are stored in building 15, R-008, on August, 23rd
2007. On January, 2nd, they make an inventory of all their spares. And how many do they
have per type?

UC 21: The OT group has sent all the devices of type OT_C_TELL1 to be repaired these two
last months. However, they do not remember their names. They ask for the list of devices with
the name of the responsible which are being repaired.

UC 22: The Silicon Tracker group has noticed that one of its TELL1 boards often fails this
year. They get the history (of this device) which describes the different statuses with
comments and the date of this change of status, and the location (where it has been repaired
for instance) for this year. They want to know how many spares of type TELL1 there are in
their laboratory.

UC 23: MUON_TELL1_12 has been used to take data since July, 21 2006. Then it broke on
October, 23 2008 and has been sent to be repaired. MUON_TELL1_12 has been replaced on
October, 24 2008.

UC 24: The HCAL has 5 PMTs which are destroyed. So they want to store this information.
They also want to get the status of HCAL_PMT_05.

UC 25: The ECAL has 10 DAC boards which were working fine until today. They need to
send these boards to Orsay for some tests. It should be known that these devices are in Oxford
for some tests. One month after, the RICH 1 group wants to get the status of the HPD
identified by XX67HGJK90.

UC 26: A readout supervisor is installed (underground) and is working. Two days later, it has
a slight problem which can be fixed quickly. It is taken out from its emplacement and put in a
special test area where it can still have an IP address part of the internal network. There is a
specific number of boards which can be tested locally (still in the cavern). It should be
reported that this readout supervisor has to be taken out for local tests.

UC 27: The MUON group has a lot of Muon Front-End electronics which need to be
installed. Unfortunately, they made a mistake when reporting their location. They put half of

Chapter 4 Requirements and use cases

 111

them in station 1 and the others in station 2, whereas it should have been the other way
around. They must be able to correct this error.

UC 28: A chip located on a RICH L0 electronics board fails. It has been replaced on its own
by another one in spare if any (of the same type). They need to connect it as it was before.
They also need to verify that all the components of the board have been replaced.

UC 29: A chip located on a PRS DAC board does not work. The whole board needs to be
replaced. One week after, a new board comes but the PRS group does not know where exactly
it was. They need also to verify whether the chip intel_chip_08 has been repaired or not. If
yes they need to put it back on the motherboard. If not, they need to ask the person
responsible for it to know the issues.

UC 30: The RICH group wants to get the history of the chip RICH_CP_12 located on a L0
electronics module to verify how many times it fails. They also want to get the list of devices
(board components included) which have not been replaced yet.

4.3.4.2 Device status

So the possible statuses (derived from the use cases) that a device (included board
components) can have are the following:

• IN_USE (UC 23). It means that the device is installed in the cavern (underground)
with a specific location and is ready to be used.

• SPARE (UC 28). It means that the device is on the shelf and it is not connected. It will
be used to replace a device.

• IN_REPAIR (UC 23). It means that the device is in reparation further to a failure or a
break down.

• DESTROYED (UC 24). This is the worst case. The device is dead.

• EXT_TEST (UC 25). It means that the device has been taken out from the pit and it is
tested in a lab (inside or outside CERN). Usually the scenario is the following. The
device is IN_USE and then it behaves badly. So it is taken out from its place to be
tested elsewhere.

• TEST (UC 26). It means that the device is tested locally, still in the pit. So contrary to
EXT_TEST, the device will benefit from the local infrastructure (i.e., a location, IP
and MAC addresses if necessary). The scenario is the following. The device is
IN_USE and then it gives strange results. It will be taken out from its location and
tested locally in a place reserved for local tests. Usually it is used when the expert
thinks that it can be fixed quickly. If it is more serious than foreseen, the device is
tested in a lab with more tools. In that case, the device changes its status and goes
from TEST to EXT_TEST.

When the status of a device changes its new location and the date of change must be reported.

For replaceable microscopic components, as not all of them can be replaced, the different
statuses are the same as for the devices. If they are not replaceable, their status corresponds to
the one of the motherboard.

4.3.4.3 Allowed transitions

In my case, Table 7 shows the allowed transition, given the initial status of a device.

Chapter 4 Requirements and use cases

 112

Device initial Status Is allowed to go to status
IN_USE SPARE, IN_REPAIR, TEST, DESTROYED, EXT_TEST
SPARE IN_USE
TEST SPARE, IN_REPAIR, IN_USE, DESTROYED
EXT_TEST SPARE, IN_REPAIR, IN_USE, DESTROYED
IN_REPAIR SPARE, IN_USE, DESTROYED
DESTROYED

Table 7. Allowed transitions.

Same rules can be applied for replaceable microscopic components.

4.3.4.4 Duality between hardware and functional devices

UC 23 raises the following problem:

Is MUON_TELL1_12 before October, 23 2008 the same as after October, 23 2008?

From a hardware point of view, the answer is no whereas from a functional point of view the
answer is yes. Indeed MUON_TELL1_12 as functional device will perform the same
functions before and after October, 23 2008. However the hardware device which occupies
the MUON_TELL1_12 function is not the same before and after October, 23 2008.

So there are two dimensions to take into account, that are functional and hardware.

A hardware device is uniquely identified by a serial code. A functional device is uniquely
defined by its functional name. If a hardware device is IN_USE, it will inherit the location of
the functional device it occupies. The location is associated with the functional device when
the hardware is IN_USE.

Using this concept the previous scenario is reformulated as follows. MUON_TELL1_12
associated with the hardware device XDG67FDG77 has been IN_USE since July, 21 2006.
Then it broke on October, 23 2008. MUON_TELL1_12 has been replaced by the spare
GHOFD89878 on October, 24 2008.

The status of the functional device is deduced from the status of the hardware device
associated with this function as it is shown in Table 8. Table 8 should be read as follows if a
hardware device is IN_USE, then the functional device associated is IN_USE.

The status of a functional device can be {IN_USE, NONE}. The status NONE means that
there is no hardware device which can perform the function.

The same remark can be made for configuration and connectivity. They are also functional
concepts. Devices will be modelled in PVSS using functional devices, otherwise whenever a
hardware device is replaced or destroyed, it implies to update all the device names which is
clumsy. For the connectivity, it is the same thing. Switches, DHCP and DNS servers use
names and not serial numbers. Also for the partitioning, it is a list of functional devices which
will be given, not a list of serial number. Moreover it is more meaningful for the users to talk
about MUON_TELL1_12 than GHOFD89878.

Chapter 4 Requirements and use cases

 113

Hardware device status Functional device status

IN_USE IN_USE

TEST NONE
EXT_TEST NONE

IN_REPAIR NONE
SPARE NONE

DESTROYED NONE

Table 8. Correspondence between hardware and functional device statuses.

The duality between hardware and functional devices is also applicable to microscopic
devices.

4.3.4.5 Queries

The following types of queries will be performed according to the use cases.

• Get the list of spare devices (hardware devices) given a location;

• Get the list of spare microscopic devices (hardware components) given a location;

• Get the list of spare microscopic devices (hardware components) given a type;

• Get the list of spares of a given type;

• Get the history of a device (either hardware or functional) over a certain period;

• Get the history of a microscopic device (functional or hardware);

• Get the list of devices (hardware or functional) which have the given status;

• Get the list of microscopic devices (hardware or functional) which have the given
status;

• Replace a functional microscopic device with a spare;

• Replace a functional device with a spare;

• Update the status of a device (either functional or hardware);

• Update the status of a microscopic device (either functional or hardware);

• Update information about a microscopic device (functional or hardware) due to
mistypes;

• Update information about a device (functional or hardware) due to mistypes.

4.3.5 Fault detection

The following use cases describe different ways to detect fault in the experiment.

UC 31: The OT subsystem installs their equipment. They test their chain of equipments by
injecting patterns, from device A to device B. Device B does not receive any signals. Where
and what is the faulty device or link?

Chapter 4 Requirements and use cases

 114

UC 32: A VELO hybrid consists of 16 beetles chips. They want to get the names of them
stored on the hybrid_34. Each group of 4 sends signal to a mezzanine driver located on a
repeater board. One beetle chip located on a VELO hybrid fails. Which mezzanine driver on
which repeater board is affected?

UC 33: Some TT TELL1 boards give strange results. They are installed in the same rack.
Where is the problem? Is it the rack or the TELL1 boards? They swap one of these TELL1
boards with a functional one. They compare the result. It seems that it is due to the rack. They
redo the swap. They get the history of this rack to check if there were any previous failures.

UC 34: A RICH TELL1 XX board does not work properly during data taking. It is replaced
by another one, if there is one. And XX is tested locally benefiting from the underground
infrastructure (IP addresses, etc.). It still does not work. It goes back to the institute who built
it.

These use cases imply the following requests:

• Get the paths between a functional device A and a functional device B;

• Get the paths between a microscopic component C and a microscopic component B
located on two different motherboards;

• Swap two functional devices;

• Update the status of a functional or a hardware device.

4.4 Conclusion

In this chapter, we have seen the methodology applied to design the CIC DB table schema and
the appropriate tools which interact with the CIC DB. The approach includes identifying the
groups of users and collecting the different requirements and use cases. One of the difficulties
is to make sure that the list of use cases and requirements is complete and correct.

In the next chapter, the design of the table schema is described using the use cases defined in
this chapter.

Chapter 4 Requirements and use cases

 115

References

[1] Alistair Cockburn, Writing Effective Use Cases, Addison Wesley Professional, Otcober
2000. ISBN10: 0201702258. 304 p.

[2] L. Abadie, E.v.Herwijnen, C. Gaspar, R. Jacobsson, B. Jost, N. Neufeld, the LHCb
configuration database. In the proceedings of ICALEPCS 2005, Geneva, 10-14 Oct. 2005.
MO4A.2-7O.

[3] ORACLE, Oracle® Database, Oracle Clusterware and Oracle Real Application Clusters
Administration and Deployment Guide, 10g Release 2 (10.2). January 2006. B14197-03. 394
p.

[4] List of requirements and use cases regarding the PVSS configuration framework for LHCb
http://lhcb-online.web.cern.ch/lhcb-online/configurationdb/default.htm#Doc

Chapter 5 The LHCb CIC DB schema

 116

Chapter 5 The LHCb CIC DB schema

This chapter describes the table schema part of the database layer. First we explain why the
ERM [1] has been chosen to design the table schema. We also give a brief overview of the
steps performed to build the table schema. Secondly we give an overview of the ERM model.
Thirdly we explain how the recipes have been represented in the CIC DB. Then we describe
the representation of the inventory/history information which has aroused the problem of the
duality between hardware and functional devices. Then the connectivity representation (for
the two levels microscopic and macroscopic) is shown. We also show how the N:M
relationship has been replaced with a method based on prime numbers. Finally we verify that
the table schema is complete using the use cases defined in the previous chapter.

5.1 Introduction

5.1.1 Why the ERM?

Besides the ERM, there are different ways of representing data such as object databases.

Object databases are very useful when the applications accessing the database are written in
an object language. They are also very convenient as there is no need to know SQL to
retrieve or store data. However, an object database is directly linked to the object format and
data types of the host language. This causes problems when other languages attempt to query
data from the store. So an object database is not as flexible as a relational database.

Relational databases are complex to design as there are different ways to model the same
information using the ERM. But they are reliable, and they ensure data integrity.

In LHCb online context, the use cases have been analyzed to see if there is any need to model
data as an object. In fact, I concluded that all the data could be modelled using conventional
types (number, varchar2) that can be stored in a column. There is no need to create special
types which could necessitate a design using objects.

5.1.2 Designing the table schema

As I used the ERM, the methodology to build the table schema is standard and as follows:

• Collect and analyze use cases.

• Apply the ERM to each use case. Determine entities with their attributes and the
relationship between entities. Draw ERM diagrams.

• Integrate all the ERM diagrams generated from the list of use cases to avoid duplication
of information and identify missing information.

• Submit the ERM diagrams to the different users to make sure that the information is
complete.

• Define a primary key [1] for each entity and foreign keys [1] to express the relationship
between entities. Build the table schema.

• Improve the performance of the database wherever possible.

5.1.3 Conventions

Chapter 5 The LHCb CIC DB schema

 117

• Entities and table names are written in bold UPPERCASE. In Figure 56, Figure 64,
Figure 76 and Figure 77 the table names are written in UPPERCASE.

• Attributes and columns are written in bold lowercase. In Figure 56, Figure 64, Figure 76
and Figure 77 the columns are written in lowercase.

• “pk” means primary key and “fk” means foreign key.

• “I” means index and U means unique index with a unique constraint.

5.2. Entity Relationship Model (ERM)

This section gives the principles of the ERM.

5.2.1 Entity

An entity type is similar to an object oriented class. It groups a set of similar elements. For
instance, in the CIC DB, an example of an entity type is a device, as it has a number of
characteristics and a device can be uniquely identified using its serial code. An entity can be
concrete as a person or a device or it can be abstract as history or a concept.

5.2.2 Attributes

The characteristics of an entity are modelled as attributes such as (for the device entity
example) functional name, location, name of the person responsible for this device, serial
number or status.

The domain of the attribute specifies the allowed values. For instance the status must be one
of the following predefined statuses (‘IN_USE’, ’EXT_TEST’, ’TEST’, ’IN_REPAIR’,
’DESTROYED’). An RDBMS represents an attribute by a table column.

5.2.3 Relationships

A relationship is an association between several entities. Relationships express how entities
are connected with each other. For example, the relationship “device_link” describes the
association between the entity sets device and link. It is a binary relationship as there are two
entities involved. A relationship can involve more than 2 entities.

In the ERM, a relationship has a cardinality. It sets the number of entities which are related to
each other.

There are 4 possibilities:

1. One-to-one: an entity A is associated with at most one entity B, and an entity B is
associated with at most one entity A. For instance, in the LHCb context, a boot image
is associated with one device type. And vice-versa a device type has at most one boot
image. There is no dual-boot situation as all the PCs in the farms are based on Linux.

2. One-to-many: an entity A is associated with any number of entities B. An entity B is
associated with at most one entity A. For instance, let us consider the device type and
device entities. Many devices can be of the same device type, but a device can be of
only one device type.

3. Many-to-one: an entity A is associated with at most one entity B. An entity B is
associated with any number of entities A. (This is the reverse of the previous case).

Chapter 5 The LHCb CIC DB schema

 118

4. Many-to-many: entities A and B can be associated with any number of each other.
For instance, a device can be part of different subsystems and a subsystem has several
devices.
The cardinality for a particular relationship depends on the data to model.

5.2.4 ERM diagrams

The Entity Relationship model is represented using diagrams as shown in Figure 48.

Figure 48. Diagrams showing entities, attributes and relationships.

.
Entities are represented using rectangles. Attributes of an entity are defined inside the lower
partition of the entity rectangle. For instance, referring to Figure 48 DEVICE TYPE is an
entity and devicetypeID is an attribute of the entity DEVICE TYPE.

Relationships are drawn differently according to the cardinality. A dashed line means that the
relationship is optional.

• One-to-one relationships are drawn as shown in Figure 49 (attributes are suppressed
here). A BOOT IMAGE will be used to boot one DEVICE TYPE. A DEVICE TYPE
can have at most one BOOT IMAGE (dashed line towards DEVICE TYPE as not all
the DEVICE TYPEs need a BOOT IMAGE).

Figure 49. The drawing convention for one-to-one relationships.

• One-to-many relationships are drawn as shown in Figure 50. A DEVICE can have one or

several PORTs. A PORT belongs to one DEVICE.

Chapter 5 The LHCb CIC DB schema

 119

Figure 50. One-to-many relationship.

• Many-to-many relationships are drawn as shown in Figure 51. A DEVICE can be part of

several SUBSYSTEMs and a SUBSYSTEM contains many DEVICEs

Figure 51. Many-to-many relationship.

5.3 From ERM to RM

The schema for the relational database (relational model) is derived from the ERM diagrams.
The next subsections explain the mapping to perform to go from the ERM to the RM.

5.3.1 Tables

The relational model uses tables as a basic structure. An entity corresponds to a table, its
attributes correspond to the columns of the tables and the domain corresponds to the data
types. For instance, referring to Figure 48, the DEVICE TYPE entity is mapped to the RM as
follows:

Figure 52. The DEVICE TYPE table. U stands for unique constraint.

Figure 52 shows the representation of the DEVICE TYPE entity in RM. The DEVICE
TYPE is the name of the table. DevicetypeID (which is of type number4), name and
description of (which are of type varchar2) are the columns of the table.

One row of the DEVICE TYPE table (also called tuple) represents an instance of the entity.
(142, ODIN, readout supervisor) is a tuple corresponding to a particular DEVICE TYPE
used by the TFC.

4 Number and varchar2 are types used in Oracle databases. They denote integer values and character strings
respectively

Chapter 5 The LHCb CIC DB schema

 120

5.3.2 Keys

Relations between tables which model the association in the ERM diagrams are expressed
with keys.

• A superkey is a set of one or more columns which allow a unique identification of a row in
a table. For example, in the table DEVICE TYPE, devicetypeID is a superkey. A
candidate key is a superkey that is minimal in the number of its columns.

• A primary key (PK) is a candidate key (there may be more than one) chosen by the DB
designer to identify a row in a table.

• A unique key (U) is also a candidate key which could have been selected to identify a row
in a table. A unique key (constraint) allow the DB designer to make sure that each value of
the column(s) is unique (no repetition). For instance in the table DEVICE TYPE, there is a
unique constraint on name as shown in Figure 53.

Figure 53. The DEVICE TYPE table with its keys.

• A foreign key is a column (or set of columns) of a table which refers to the primary key of

another table. It enforces referential integrity. For instance, the column devicetypeID in the
table DEVICE refers to the column devicetypeID in the table DEVICE TYPE. So the row
identified by devicetypeID in table DEVICE TYPE cannot be deleted as long as a
reference to the column devicetypeID exists in the DEVICE table. Foreign keys can be
used to model 1: 1 or 1: N relationships.
1:N relationships (see Figure 50) are modelled in the RM as shown in Figure 54. In Figure
54, and Figure 55, the dashed arrow indicates that there is a foreign key between the two
columns. The arrow points to the column which is referred to. The primary key of the
DEVICE TYPE table (devicetypeID) has been added as a foreign key column in the
DEVICE table. In Figure 49, to map this relationship in the RM, a foreign key column
devicetypeID has been added to the BOOT IMAGE table. To map a 1:1 relationship into
the RM, one of two tables must contain a foreign key column which corresponds to the
primary key of the other tables.

Chapter 5 The LHCb CIC DB schema

 121

Figure 54. Representation of the 1:N relationship in the RM. The dashed arrow indicates that
DEVICE.devicetypeID is a foreign key to DEVICE_TYPE.devicetypeID.

Figure 55. N:M relationship represented in the RM. The dashed arrow indicates that
SUBSYSTEM_DEVICE.DeviceID is a foreign key to DEVICE.deviceID.

To model N:M relationship in the RM model, an extra table must be created. The primary key
of the two tables must be added as foreign key columns in this extra table.

Figure 51 represents an example of N:M relationship. It is modeled in the RM as shown in
Figure 55. The SUBSYSTEM_DEVICE table has been added to model the N:M relationship.

Chapter 5 The LHCb CIC DB schema

 122

Two columns containing the primary keys of the two tables are mandatory. In the example
used by the figures the columns are (subsystemID, deviceID) from the tables (DEVICE and
SUBSYSTEM). The primary key of the SUBSYSTEM_DEVICE table is the pair
(subsystemID, deviceID).

5.4 Recipe representation

5.4.1 Entity & relationship

To store the contents of the PVSS datapoints and the structures made by them (recipes), the
CERN PVSS Support group have defined the following entities and attributes [2]. The entities
and relationships have been defined based on use cases from UC 1 to UC 5 (in Chapter 4).To
model a subsystem composed of a hierarchy of devices, two entities are used. A
HIERARCHY has a unique identifier, a type (Hardware, Logical or FSM) and a
description. An ITEM is a tree of devices. Each child has a single parent. An ITEM is
associated with a HIERARCHY.

The RECIPE entity describes generic information of a configuration. It has a name and a
description.

The RECIPE DATA entity describes the content of a recipe. It is a set of parameters and
values. Each row of the table corresponds to a pair (parameter (propname), value
(propvalue)) It has also alert parameters which are part of PVSS data points. For each
parameter, there is the corresponding data type (proptype) as defined in PVSS. RECIPE
DATA is associated with a HIERARCHY of devices.

The RECIPE TAG entity attributes a tag to each RECIPE DATA.

5.4.2 Representation with tables

The tables for storing recipes have been constructed as represented in Figure 56.
The HIERARCHY table contains the different types of hierarchies and their versions. Each
hierarchy is uniquely identified by hver, the primary key of this table.

The ITEMS table contains the devices of the hierarchy identified by hver (foreign key). The
parent column corresponds to the ID of the parent node in the hierarchy. For instance, the
root of a tree has parent=NULL. The name column is the name of the device and type
corresponds to the type of the device. For instance, if name is ’VEL0_TELL1_55’, then type
is ‘VELO_TELL1’. name and type are the same as stored in PVSS data point and data point
types. The id column is the primary key of the table, a sequence of number. The dpid is a
foreign key to id column. This column indicates the parent device of name.

The RECIPE table lists all the different recipes which have been created. Rver is a sequence
of numbers and is the primary key of the table.

The RECIPE_DATA table contains the collection of parameters of a recipe identified by the
column rver and associated with a hierarchy node by the id column. The propname column
contains the name of parameter to configure. The propvalue contains the value of this
parameter. Proptype stores the type of the propvalue, i.e., if it is an int, a string or a bit, etc.
it allows converting the data stored in the CIC DB in the correct PVSS types. The other
columns are alarms used in PVSS. Propid (a sequence of number) is the primary key of the
table.
The RECIPE_TAG table lists all the different recipe tags. The element parts of the recipe are
listed using the propid column (foreign key referencing RECIPE_DATA.propid column).

Chapter 5 The LHCb CIC DB schema

 123

Figure 56. Table schema for the recipes

The V_ITEMS and V_ITEM_NAMES tables are materialized views which display the
hierarchy structure in a better structure for PVSS.

5.5 Inventory and history design

5.5.1 Entity & relationship

Using UC 20, there are two entities to distinguish HARDWARE DEVICE and
FUNCTIONAL DEVICE. Their respective attributes have been derived using different use
cases defined in Chapter 2.

A HARDWARE DEVICE shown in Figure 57 is identified by a serial code (UC 25), an
intrinsic property of hardware. It can have a hardware (hw) name (UC20). A hardware
device has an hw type (UC 20), a responsible (UC 21) and a current status (UC 25). An hw
device has a location (UC20).

Chapter 5 The LHCb CIC DB schema

 124

Figure 57. HARDWARE DEVICE model.

A FUNCTIONAL DEVICE as shown in Figure 58 has a unique name (UC 23) through all
the experiment. It has also a functional type (UC 21). It can have a function (functionID)
(UC 13). For instance, a controls PC can host both a DNS server and a DHCP server. A
FUNCTIONAL DEVICE can be occupied by at most one HARDWARE DEVICE (UC
20). It is a one-to-one relationship. It has a location (UC 13). If the FUNCTIONAL
DEVICE is occupied by a HARDWARE DEVICE, the HARDWARE DEVICE inherits
from the functional location.

A FUNCTIONAL DEVICE can be enabled or disabled (UC 10), i.e. the FUNCTIONAL
DEVICE takes data or does not take data. It is specified by nodeused.

A FUNCTIONAL DEVICE can have a promiscuous mode (UC11). This attribute is needed
for the DAQ for PCs. This property can be seen a priori as a hardware property. However the
value of this parameter is bound to the function. If the hardware is replaced, the value of this
parameter will remain the same.

Figure 58. FUNCTIONAL DEVICE model.

A FUNCTIONAL DEVICE TYPE (UC 21) as shown in Figure 59, groups all the
FUNCTIONAL DEVICES of the same type. There is a one-to-many relationship from
FUNCTIONAL DEVICE TYPE to FUNCTIONAL DEVICE. A FUNCTIONAL
DEVICE TYPE has a name (UC 21), a number of inputs (UC 10) and a number of
outputs (UC 10). It has also a colour for display purposes (for CDBVis). Input and output

Chapter 5 The LHCb CIC DB schema

 125

numbers are related to the FUNCTIONAL DEVICE TYPE. Indeed the number of inputs
or outputs will not change if the hardware is replaced.

Figure 59. FUNCTIONAL DEVICE TYPE model.

The HISTORY (UC 30) of a given HARDWARE DEVICE or of a given FUNCTIONAL
DEVICE consists of providing the following information (see Figure 60):

• Serial code (UC 20)

• Deviceid (functional device name is then derived) (UC 20)

• Status (UC 22)

• Date of the status change (UC 22)

• Location (UC 22)

• Comments (UC 22)
There is a one-to-many relationship from HARDWARE DEVICE to HISTORY OF
DEVICE and also from FUNCTIONAL DEVICE to HISTORY OF DEVICE.
The HISTORY OF DEVICE table is common to HARDWARE DEVICE and
FUNCTIONAL DEVICE tables.

FUNCTIONAL DEVICE and HARDWARE DEVICE are entities which are used in the
macroscopic view. Two other entities have been designed to handle the microscopic view,
HARDWARE BOARD COMPONENT and FUNCTIONAL BOARD COMPONENT.
They present some similar attributes to the ones defined for the macroscopic view.

Chapter 5 The LHCb CIC DB schema

 126

Figure 60. History model.

A HARDWARE BOARD COMPONENT (see Figure 61) (UC 28) has a name (UC 29), a
type, a responsible (UC 29) and a status (UC 28). It can be replaceable (just the piece of
hardware) (UC 28). If it is replaceable, the HARDWARE BOARD COMPONENT has its
own serial code (UC 30).

Figure 61. HARDWARE BOARD COMPONENT model.

Chapter 5 The LHCb CIC DB schema

 127

If the HARDWARE BOARD COMPONENT is IN_USE or if the HARDWARE BOARD
COMPONENT is not replaceable, then its location corresponds to the HARDWARE
DEVICE where it sits.

A FUNCTIONAL BOARD COMPONENT (see Figure 62) has also a name (UC 30) and a
type (UC 29). It is also occupied by at most one HARDWARE BOARD COMPONENT. It
is a one-to-one relationship. The location of a FUNCTIONAL BOARD COMPONENT
corresponds to the FUNCTIONAL DEVICE where it sits (UC 28). There is a many-to-one
relationship from FUNCTIONAL BOARD COMPONENT to FUNCTIONAL DEVICE.

Figure 62. FUNCTIONAL BOARD COMPONENT.

A BOARD COMPONENT (FUNCTIONAL and HARDWARE) has a HISTORY (UC
30) (see Figure 63). Usually it is linked to the history of the hardware board on which the
component sits. There is a many-to-many relationship from FUNCTIONAL BOARD
COMPONENT to HISTORY COMPONENT and also from HARDWARE BOARD
COMPONENT to HISTORY COMPONENT.

Chapter 5 The LHCb CIC DB schema

 128

Figure 63. HISTORY COMPONENT representation.

5.5.2 Table schema

Figure 64 shows the table schema designed to represent history and inventory. Attributes
(created, user_update, author, terminal_name) used for internal management have been
added to the FUNCTIONAL_DEVICE_TYPES and FUNCTIONAL_DEVICES tables.
Also FUNCTIONAL_DEVICE.nodeused corresponds to the enabled attribute of the
FUNCTIONAL_DEVICE entity.

• The HARDWARE_DEVICES table contains all the hardware devices. The status
column represents the current status of the hardware device. The serial code is the
primary key of this table. It identifies uniquely the hardware device.

• The FUNCTIONAL_DEVICE_TYPES table contains all the functional device
types. The primary key (devicetypeID) is a sequence of number to avoid complex
primary keys (see next section for explanations).

• The FUNCTIONAL_DEVICES table contains all the functional devices. The serial
code column is a foreign key to HARDWARE_DEVICES.serial_code. The
devicetypeID column refers to FUNCTIONAL_DEVICE_TYPES.devicetypeID.
The primary key is deviceID, a sequence of numbers and not the devicename (which
is a candidate key) for performance reasons. The comparison between numbers is

Chapter 5 The LHCb CIC DB schema

 129

faster than the comparison between strings. The nodeused column is a flag indicating
if the functional device is disabled (0) or enabled (1). The status is deduced from the
status of the hardware device occupying the functional device. The subsystem column
is described in section 5.6.4 It indicates which subsystem(s) a device is part of. It is
used for navigability and partitioning reasons. The node column is explained in the
next chapter.

Figure 64. Table schema for the history and inventory data.

• The DEVICE_HISTORY table contains history of FUNCTIONAL and
HARDWARE_DEVICES. The primary key is historydevid, a sequence of numbers
to ensure uniqueness. DeviceID refers to FUNCTIONAL_DEVICES.deviceID and
serial_code to HARDWARE_DEVICES.serial_code.

Similar table structures for components have been implemented. The main differences are:

• The HARDWARE_COMPONENTS.snbid column, a sequence of numbers, is the
primary key instead of the serial_code. Not all the components have their own
serial_code, however they are used in the connectivity.

• The FUNCTIONAL_COMPONENTS.motherboardid column refers to the

Chapter 5 The LHCb CIC DB schema

 130

FUNCTIONAL_DEVICES.deviceID. It corresponds to the location of the
component.

• Nodeused and promiscuous_mode have no meaning for a board component. There is
no requirement to disable a board component.

Components and devices were separated for two reasons:

• The constraints are different, for instance the serial code is not defined for all the
board components. A hardware device is replaceable but not necessarily a board
component. It is easier to implement checking functions (check (or declarative)
constraints, trigger) to keep consistency. First we tried to implement the constraint
using check constraint feature5. If it is not possible, either it is implemented with a
trigger or in the application code (as one single library will be used to interact with the
connectivity and the history related tables in the CIC DB).

• Initially it was not foreseen to store board components. The need to also store board
components appears late (end of 2005). If in the years to come, there is no need for
this, the tables can be ignored6. The other part of the database is not affected.

5.6 Connectivity design

Storing the connectivity consists of describing the DAQ network and other subdetectors
topologies. It has two levels, the macroscopic and microscopic connectivity.

5.6.1 Introduction

Connectivity can be viewed as the set of edges of a graph where a node is a pair (device,
port). It uses functional devices. Let us assume there is a link between the functional devices
A and B. A is occupied by the hardware A1882TYGG and B by GH6789JKJK. If B is
replaced by the hardware GJKKKK789, there is still a link between A and B.

Relating the connectivity to hardware would have implied a change whenever there is a
hardware replacement, which is not the case if the connectivity is considered as functional.
We could also envisage considering hardware links, i.e. links between two hardware devices.
However hardware links are stored in another database for traceability and security reasons as
there are hardware devices exposed to the radiation area.

Connectivity consists of describing links between functional devices. A functional link
corresponds to physical cables in the reality. However there is no mean to check that all the
links have been inserted. It is up to the user to make sure that the all the links have been
inserted properly.

5.6.2 Boot image: entity & relationship model

To generate the dhcp config file, the boot image of a PC in the farm or a TELL1 board must
be known. The boot image is usually bound to the type of the device. However in some cases,
it can be specific to a device. This information has been represented using two new entities,
DEVICE TYPE BOOTING (UC 9) and DEVICE BOOTING (UC 9). In both cases, the
attributes are shown in Figure 65.

5 Check or declarative constraint is specified when creating a table. For instance, check that the value of the
column is always greater than 0 can be implemented using a check constraint.
6 If tables are truncated, the application software will not be affected. It is like empty tables.

Chapter 5 The LHCb CIC DB schema

 131

Figure 65. DEVICE BOOTING and DEVICE TYPE BOOTING models.

There is a one-to-one relationship from DEVICE TYPE BOOTING and FUNCTIONAL
DEVICE TYPE. There is only one type of booting image per type, so DEVICE TYPE
BOOTING is uniquely defined by the devicetypeID, which is also a foreign key to
FUNCTIONAL_DEVICE_TYPE.devicetypeID. The same is true for DEVICE
BOOTING.

5.6.3 Partitioning representation

At start up, the operator will select subdetectors to define a partition. The name of the sub-
detectors is already defined as they are also used by the ECS for control and monitoring
purposes. A subdetector can be run independently if only and only if it is connected to an
output port of the TFC switch. A subdetector (used in the ECS) can regroup one or several
parts of detector from a TFC system point of view. For our purposes, the partitioning process
consists of associating a subsystem to the output port on a switch.

There are two methods to model partitioning.
1. This is the most intuitive one. It consists of defining the entity OUTPUT_PORT with

these two attributes output_port_nb and subsystem_name.

Chapter 5 The LHCb CIC DB schema

 132

Subsystem name Output_port_nb
VELO 0
VELO A 1
VELO C 1
VELO 1
PUS 2
RICH 3
RICH 4
RICH1 3
IT 4
TT 5
OT 6
OT 7
OT A 6
OT C 7
RICH2 8
SPD/PS 9
ECAL 10
L0CALO 10
HCAL 11
MUON A 12
MUON C 13
L0MUON 12
L0DU 14
L0TRIGGER 10
L0TRIGGER 14
L0TRIGGER 12
L0TRIGGER 2

Table 9. Example of TFC switch output connectivity.

Table 9 shows the OUTPUT_PORT table following the port assignment described in
document [3].

 With this table, the correspondence between output port and subsystems is immediate.

2. The second method is based on the connectivity. Instead of storing the mapping
between output port and subsystem name, we generate the destination table of the TFC
switch. In other words, we find which devices are at the end of the TFC chain as
described in Chapter 2, section 2.3. As a remark, the last devices are the TELL1
boards whatever the subdetector. Then using the FUNCTIONAL_DEVICE.sysID
attribute, we know the subsystem(s) which are associated with the output port. The
principle of the destination table and its creation will be explained in Chapter 6.

In this thesis, we have selected the second method because it is more elegant as it does not
require creating another table to answer specific queries. Creating the OUTPUT_PORT table
is redundant since this information can be derived from the CONNECTIVTY table. Also the
second method follows the autonomic approach by reducing human intervention. The concept
of destination table is useful in the DAQ system too.

Chapter 5 The LHCb CIC DB schema

 133

5.6.4 Subsystem representation

5.6.5.1 Intuitive model

Getting all the paths that are part of a given subsystem which go through a given device is a
requirement for navigability reasons.

A device can be part of one or of several sub-systems. The intuitive way to model is shown in
Figure 66.

Figure 66. System table design.

Two new entities need to be modelled, SUBSYSTEM7 and FUNCTIONAL_DEVICE_
SUBSYSTEM. SUBSYSTEM has a name and an ID (a number used to uniquely identify the
sub-detetector). There is a many-to-many relationship between SUBSYSTEM and
FUNCTIONAL DEVICE. A SUBSYSTEM may include FUNCTIONAL DEVICEs and a
FUNCTIONAL DEVICE can be in several SUBSYSTEMs. So to model this association
with tables, there will be an extra table called FUNCTIONAL_DEVICE_ SUBSYSTEM
table.
The FUNCTIONAL_DEVICE_ SUBSYSTEM table will have many rows as a lot of
devices will be included in different subsystems. This table will have two columns (systemID
number, deviceID number), where systemID refers to SUBSYSTEM.systemID and
deviceID refers to FUNCTIONAL_DEVICE.deviceID.

For instance, consider the following FUNCTIONAL_DEVICE MUON_CHAMBER_01
which belongs to the SUBSYSTEMs MUON_A and to L0MUON. The given device has two
entries in FUNCTIONAL_DEVICE_SUBSYSTEM. One row will contain the
SUBSYSTEM.systemID of MUON_A and the other one of L0MUON.

If the user wants to select all the devices which belong to MUON, the
MUON_CHAMBER_01 will not be listed whereas it is part of MUON. It will not be part of
the L0TRIGGER either. So two more rows need to be added to the
FUNCTIONAL_DEVICE_ SUBSYSTEM table to declare MUON_CHAMBER_01 as part
of {MUON, MUON_A, L0TRIGGER, L0MUON}.

All together four rows will be inserted in FUNCTIONAL_DEVICE_ SUBSYSTEM table,
one for MUON A one for MUON, one for L0MUON and another one for L0TRIGGER.

7 The SUBSYSTEM table will contain all the possible subsystems according to the ones defined in ECS. It
prevents from attributing mistyped or unknown subsystems to devices. It is a security feature.

Chapter 5 The LHCb CIC DB schema

 134

However performance is an issue. Programming the TFC switch should be done in less than a
few seconds. Also getting paths between devices should be fast (less than 100 seconds for the
Calorimeters as mentioned in Chapter 2).

5.6.4.2 Use of prime numbers

To improve the performance, the subsystem concept has been redesigned by exploiting the
fact that the number of subsystems is quite low (less than 30). This number will be rather
static as it is linked to the detector architecture and changing it would imply many changes in
the design of the ECS. It is important to have an idea of the number of possible values that an
entity can have as the prime numbers grow very fast.

In this design, we attribute particular numbers to subsystems according to the following
algorithm.

Definition: A subsystem A is included in subsystem B if and only if all the devices of
subsystem A are part of subsystem B.

To allocate an ID to a subsystem we proceed as follows:

1. Is the subsystem included in other subsystems?

2. If the answer is no, then we attribute it a prime number as an ID. A prime number can
be attributed only once. If the answer is yes, then we attribute it a prime number and
we multiply this value with the ID of the subsystem which contains it.

The principles of this algorithm are illustrated in Figure 67.

Figure 67. Attribution of prime numbers to subsystems. The last case is not used in the context of LHCb.

Referring to the third case shown in Figure 67, we have System D included in both System E
and System B. We translate this information using the product of the two subsystemIDs. So
when decomposing 715 (systemID of System D) in primes, we obtain 5, 11 and 13. We know
that System D is part of System E (because of 13) and System B (because of 5).

Chapter 5 The LHCb CIC DB schema

 135

However it is important to note that in the LHCb context, there is no such a case. In other
words, a system has only one parent and consequently can be included at most in one
subsystem. It is because the control system is hierarchical.

In the CIC DB, there is a table which contains one hundred prime numbers with their position
as shown in Table 10. It can be extended by adding more prime numbers if needed. 1 is not
considered as a prime number (all the numbers can be divided by 1).

Position Prime number
1 2
2 3
3 5
4 7

Table 10. Extract of the prime number table.

To make the association, subsystem and devices, the user must specify only the smallest
subsystem name (which cannot be divided any more). For instance, if a device is part of
MUON A and part of L0MUON, only MUON A and L0MUON must be mentioned by the
user. The other SUBSYSTEM (MUON and L0 TRIGGER) are automatically retrieved as the
prime number decomposition of a number is unique.

The correspondence between subsystems and subsystem IDs can be predefined and stored in
SUBSYSTEM table (see Table 11).
Remark:
L0MUON is not included in the MUON system as they have different TELL1 boards so
L0MUON is not included in MUON. (The same remark can be applied for the L0CALO).

Then using this systemID attribution, FUNCTIONAL DEVICE.sysID is filled by
computing the product of the SUBSYSTEMs (which cannot be divided).

For instance, if the device is in both MUON A and L0MUON, the sysID is equal to
4757*6557=31191649.

In the other direction, getting all the devices which are part of a subsystem A associated to
sysID_A is done by checking that mod (sysID, sysID_A) =0.

To update the sysID attribute, in the two cases (standard ERM model and primes model), the
user needs to specify the new list of subsystems.
For instance, if a user has attributed VELO_A to a device identified by deviceid XX and
normally this device is part of VELO_C, the update will be as follows:

• For the first method : delete all the rows in FUNCTIONAL_DEVICE_ SUBSYSTEM
which have deviceid=XX and insert (XX,VELO_C); (XX,VELO);

• For the second method, update FUNCTIONAL_DEVICE set sysID
=systemID(VELO_C) where deviceid=XX;

Chapter 5 The LHCb CIC DB schema

 136

Subsystem Name Subsystem ID Comments (in bold prime number

which identifies a sub-sub-system)
TFC 3 Subsystem which cannot be included
DAQ 5 Subsystem which cannot be included
VELO 7 Subsystem which cannot be included
VELO A 77 7*11 (included in the VELO)
VELO C 91 7*13 (included in VELO)
RICH 17 Subsystem which cannot be included
RICH 1 323 17*19 (included in RICH)
RICH 2 391 17*23 (included in RICH)
OT 29 Subsystem which cannot be included
OT A 899 29*31 (included in OT)
OT C 1073 29*37 (included in OT)
ST 41 Subsystem which cannot be included
IT 1763 41*43 (included in ST)
TT 1927 41*47 (included in ST)
ECAL 53 Subsystem which cannot be included
HCAL 59 Subsystem which cannot be included
PRS 61 Subsystem which cannot be included
MUON 67 Subsystem which cannot be included
MUON A 4757 67*71 (included in MUON)
MUON C 4891 67*73 (included in MUON)
L0MUON 6557 79*83 (included in L0TRIGGER)
L0CALO 7031 79*89 (included in L0TRIGGER)
PUS 7663 79*97 (included in L0TRIGGER)
L0TRIGGER 79 Subsystem which cannot be included
L0DU 7979 79*101 (included in L0TRIGGER)

Table 11. The Subsystem table with its subsystemIDs.

 5.6.4.3 Performance comparisons
The tests have been made on a central Oracle database 10g installed by CERN Central
Database Services. The workstation which hosts the database, is a SUN 280 R. The operating
system is SOLARIS/RARP. The database service is a public service, shared between users
from many experiments, not only LHCb.

I have executed the following SQL queries from two Oracle SQL*plus (i.e. two sessions).
Autotrace (an Oracle tool to analyze queries) was set to TRACEONLY mode.

• Select t.devicename from FUNCTIONAL_DEVICES t, SUBSYSTEM l,
FUNCTIONAL_DEVICE_SUBSYSTEM s where t.deviceid=s.deviceid and
s.systemid=l.systemid and l.system_name=’XXX’ for the first method;

• Select t.devicename from FUNCTIONAL_DEVICES t, SUBSYSTEM l where
mod (t.sysid,l.systemid)=0 and l.system_name=’XXX’ for the second method;

In both cases, ‘XXX’ corresponds to a subsystem name.

I have progressively increased the total number of devices. The Table 12 presents the results
of the tests.

Chapter 5 The LHCb CIC DB schema

 137

Number of
devices8

System name Number of rows
returned

Execution time
Method 1 (avg,
sec) Standard
ERM model

Execution time
Method 2 (avg,
sec)
Primes model

7790 DAQ

2962 0.04 0.02

15578 MUON_C
TFC

14
6676

0.09
0.06

0.01
0.04

124610 OT
MUON

2160
224

1.09
0.08

0.08
0.04

249218 VELO
DAQ

2944
94784

4.04
8.01

2.09
7.02

498434 MUON
L0TRIGGER
L0TRIGGER
RICH
VELO
DAQ

896
640
1536
5184
5888
189568

8.01
10.07
10.00
4.08
7.00
24.04

14.02
11.00
8.03
3.02
5.06
21.08

996864 DAQ
ST
VELO

379136
12288
11776

40.01
18.56
22.06

36.07
22.50
28.00

Table 12. Comparison between the two methods.

From the results, one notices that Method 2 is more efficient as long as the number of devices
is not higher than 500,000. It is due to the fact that Oracle indexes cannot be used if a function
is used on a column. So the second method always performs a full scan of the
FUNCTIONAL_DEVICE table because of mod (…) unlike the first method.

In my case, this query will be performed against the destination table of the TFC which has
less than 60,000 rows as it will be shown in the Chapter 8. And in that case, the method 2 is
faster.

5.6.4.4 Limitations of the prime number algorithm

The problem

One can notice that the systemID grows very quickly as it is a prime number. So if there are
too many subsystems, the model cannot be used. The aim of this section is to determine an
upper limit on the number of subsystems, above which the prime number algorithm breaks
down.
The inclusion of subsystems is determined by the FSM hierarchy. In the FSM hierarchy, for
instance, the VELO consists of two subsystems VELO_A and VELO_C.

The number of the TFC output ports will fix the number of leaves of the tree (in other words
the level of granularity). For instance, all the devices of VELO_A are driven by the output 1
of the TFC switch (see Table 9). If in the FSM hierarchy VELO_A is split into 3 parts for
instance VELO_A_1, VELO_A_2 and VELO_A_3, these 3 subsystems are not needed.
Indeed from a partition point of view, selecting VELO_A_1 or VELO_A is the same, the TFC

8 The fact that the figures are precise has no particular meaning.

Chapter 5 The LHCb CIC DB schema

 138

switch will program in the same way. So the subsystems VELO_A_1, VELO_A_2 and
VELO_A_3 will be not stored in the SUBSYSTEM table.

So the deeper the tree is (or levels of inclusion), the bigger the systemID will be. In this part,
we try to find the boundaries of this model, in terms of the depth of the tree design and the
number of output ports. So there are two essential variables, the number of outputs of the
switch which determines the number of leaves and the depth of the tree.

The systemID is an Oracle number, whose precision is less than 1038 digits [4].

Convention: Let us note P(n), the function which gives the nth prime number, where n is an
integer>1. (so we have P(1)=2, P(2)=3, P(3)=5, etc.).

We present three scenarios:

1. In the first one, there is no inclusion. It is the best case scenario. None of the systems
has a parent. So each system is identified by a prime number. This scenario shows the
maximum values that one of the two entities can have, in the case the method with the
prime numbers should replace a N:M relationship. In our case, it will also correspond
to the maximum number of output ports of the TFC switch.

2. In the second one, there is one level of inclusion only. A parent has only two children.
It is the current design in LHCb as an output port of the TFC switch serves a
subsystem which is included at most in one subsystem. Then we evaluate the
maximum number of output ports, which also corresponds to the maximum of child
subsystems (with one parent) which can be defined.

3. In the third one, we simulate a worst case scenario, by maximizing the depth of the
tree (i.e. the levels of inclusion). At each level of the tree, a subsystem is included. The
advantage of this tree is a relation can be derived between the number of leaves and
the depth of a tree. We assess the maximum number of subsystems which can be
handled.

First scenario the FSM subsystem tree corresponds to the TFC partitions

In that case, there is no subsystem inclusion. The subsystems displayed to the user correspond
exactly to the TFC partitions. In this case, the maximum number of subsystems corresponds
to the number of prime numbers less than 1038

, roughly 2.30*1034 prime numbers, which is the
upper limit on the number of subsystems [5].

However there is a limit fixed by the number of output ports of the TFC switch. Nowadays,
on the market the biggest switch has 1200 ports. It is the Force Ten switch used in the DAQ
system. So if there is no subsystem inclusion, the model works fine with the biggest switch as
2.30*1034 >1200. It also implies that this model can be used to replace a N:M relationship
model if one of the two entities has less than 2.30*1034 values.

Second scenario each subsystem is grouped by two

Figure 68. Example of 4 subsystems grouped by two.

Let us assume that the TFC switch has N outputs and subsystems are grouped per two (Figure
68).

Chapter 5 The LHCb CIC DB schema

 139

If N is odd, then there is one inclusion of 3 subsystems. There is only one level of inclusion as
it is the case in the current implementation. Let us found the maximal value of N.

There are N children and E[N/2] parents. The biggest systemID will be
P(E[N/2]*P(N+E[N/2]). If N is even, N can be written as N=2k and the previous formula is
P(k)*P(3k). If N is odd, N can be written as N=2k+1 and the previous formula is the same as
for even numbers, i.e., P(k)*P(3k). P(k) is equivalent to klog(k) and P(3k) to 3kln(3k), so
P(k)*P(3k) is equivalent to k²ln(k)*ln(3k) [4].

And k²ln(k)*ln(3k) must be have at most 39 digits . If we note f(p)= p²ln(p)*ln(3p), f is an
increasing function as product of increasing functions.
We have f(1017)=1034*39.14*40.24=1.575093*1037 , f(5.1017)=4.26*1038.(39digits),
f(8.1017)=1.11*1039 (40 digits). So k=8*1017 is a good approximation. And N=16.1017.

There are some years to go by before getting a switch with 16.1017output ports!

Third scenario Example of a tree where one leaf is added at each level

The maximum depth of this tree design as shown in Figure 69 can be computed given the
number of leaves which is equal to the number of output ports.

Figure 69. Example of a representation of a tree of depth equal to 5 and with 15 leaves.

The total number of nodes in this type of tree design is equal to 2N-1 where N corresponds to
the number of leaves (N≥2) and the depth is equal to N.

Proof of the formula by induction on N

N=2

Figure 70 shows how the tree looks like. There is in total 3 nodes (2 leaves + one parent
node). And 2N-1=2*2-1=3. The depth is 1 (2-1). So the formula is true for N=2.

Figure 70. A tree of depth 1 with 2 leaves.

Chapter 5 The LHCb CIC DB schema

 140

Let us assume that it is true for N, let us show it for N+1.

N->N+1

Figure 71 shows how to build a tree of N+1 leaves from a tree of N leaves. Two nodes have
been added (represented in green). SN+1 represented the (N+1) th leaf of the tree. Then, this
node is joined to the tree of N leaves by adding the node SP+1. This node has two children,
SN+1 and SP, the top node of the tree with N leaves.

By assumption, the tree with N leaves has 2N-1 nodes. To build the tree with N+1 leaves, we
have added two nodes (SN+1, SP+1). So the tree with N+1 leaves has (2N-1) + 2 = 2N+1 =
2(N+1)-1. So the formula is true for N+1.
The depth of the tree with N leaves is N-1. The tree with N+1 leaves has an extra level with
the SP+1 node. So the depth of the tree with N+1 leaves is (N-1) +1=N. So the formula is true
for N+1.

Thus it is true for any N (q.e.d).

Figure 71. Building a tree of N+1 leaves from a tree with N leaves.

The next step is to quantify the subsystemID number limit according to N.

Case where N=16 (the number of TFC output switch)

The sysID is an Oracle number, which cannot be greater than 1038.

Let us assume that the TFC switch has 16 output ports, so N=16. There are 2*16-1=31
systemIDs and the depth is equal to (16-1) =15 levels.

The root of the tree will get the smallest ID, which is the smallest prime number. It is then
equal to 2.

The two children of the root will get 2*3=P (1)*P (2) and 2*5=P(1)*P(3) as systemIDs. At the
second level of inclusion, P(1)*P(3)*P(4) and P(1)*P(3)*P(5) will be used. At each level, two
new prime numbers are needed.

Chapter 5 The LHCb CIC DB schema

 141

So at the last level, (level=N-1) of the tree the two subsystem IDs will be P(k)∏P(2n+1)
where n is an integer between 0 and 14 (15-1), as there are 15 levels and k is either 30 or 31 as
there are two subsystems which are included iteratively in 15 subsystems. In other words it is
the product of over P(n) where n is an odd number between 1 and 31.

So the biggest systemID will be P(31)*∏P(2n+1) where n varies from 0 to 14. We have
P(31)=127, P(29)=109,…, P(1)=2. So the biggest systemID is 4255492212390218658617935,
which can be stored in the CIC DB as it has 25 digits.

Computing the maximal value of N with this type of tree

Let us assume that the TFC switch has N outputs. The biggest systemID will be equal to
P(2N-1)* ∏P(2n+1) where n is an integer between 0 and (N-1)-1=N-2.

After computations using the list of the 1000 first primes [5], I found that the maximum value
of N is equal to 21. For N=22, P(2N-1)*∏P(2n+1) = 1,55736049*1038, and P(2N-
1)=P(43)=191. This number has 39 digits.

To conclude, to go for this representation, it is preferable that the number of level of
inclusions is not too high, strictly less than 22.

5.6.4.5 Link type representation

The LINK TYPE (UC 8) has been modeled with a similar concept. A simple link type such
as the TFC signal will be associated with a prime number (link_nbr attribute). A composite
link type (TFC signal and data signal), which is a set of simple link types, will be associated
with the product of the prime numbers (link_nbr) of the links in the set. There is at most one
level of inclusion. So it allows having 16.1017 different types of links referring to the second
scenario in the previous section. Here again, the number of link types is rather low, less than
20 in total. It is also a static number over the years. So the method with the prime numbers
can be applied.

5.6.4.6 Function representation

The FUNCTIONAL_DEVICES.functionID has been modelled using prime numbers. There
is a table FUNCTION (see

Figure 64) which contains the possible functions. There are a limited numbers (less than 20)
and mainly used for the DAQ (DNS, NFS, TFTP, DHCP have currently defined). Each
function is attributed a prime number as an ID. If there is no function the attribute functionID
is 0. The FUNCTIONAL_DEVICES.functionID corresponds to the product of the
functioned, it fulfils. For instance, if a controls PC hosts both a DHCP server and a DNS
server and the functionID of the DNS is 2 and the functionID of the DHCP is 3, then 2*3=6
corresponds to the functionID of this controls PC.

Here there is no level of inclusion, so it corresponds to the first scenario described in 5.6.4.4.
It means that 2.30*1034 different functions can be stored, which is by far more than the
possible functions we had (less 20 for the moment).

5.6.5 Entity & relationship

A LINK (UC 8) is a connection between two ports of two functional devices. To program the
routing tables and the TFC switch and also to get paths between 2 devices, the port should be

Chapter 5 The LHCb CIC DB schema

 142

specified. A link carries data, a tfc signal, a data signal, a high voltage signal, or it can be a
mixture of tfc_signal and data signal (UC 8).
Three entities have been modelled, a port, a link type and a link.

A port is a generic concept which covers connectors and network interfaces. A port is where
you can plug a cable to it. It has attributes bound to the hardware device and others to the
functional device.

A HARDWARE PORT (see Figure 72) belongs to a HARDWARE DEVICE (UC 12).
There is a many-to-one relationship from HARDWARE PORT to HARDWARE DEVICE.
It is also uniquely identified by a port number (UC 8), a type (UC 12) and a dataflow way
(input or output) (UC 8) and a serial code which corresponds to the HARDWARE DEVICE
it belongs to. In the case of an Ethernet port (so there is no concept of input or output), the
dataflow way is defined according to the data coming from the detector. It can have a burnt
internal address (corresponds to the real MAC address) (UC 12) and a MAC address (UC
12), such as the port of a DAQ switch. These attributes depend on the hardware device.

Figure 72. HARDWARE PORT model.

A FUNCTIONAL PORT (see Figure 73) (UC 8) belongs to a FUNCTIONAL DEVICE.
There is a many-to-one relationship model from FUNCTIONAL PORT to
FUNCTIONAL DEVICE. It is also uniquely identified by a number (UC 8), a type (UC
12) and a dataflow way (same concept as in hardware) (UC 8) and a deviceID. It has an
administrative status (UC 12). It can be up or down. Some attributes are specific to the
DAQ system such an IP address (UC 12), a phy (type of cable which can be plugged) (UC
8) and a speed (UC 8). In some cases, a port can be viewed as two logical interfaces. One
interface is used for data acquisition and another one for the control. A pxi booting (PCI
EXtensions for Instrumentation) (UC 11) flag specifies which logical interface will be used
for booting. All these parameters will not change after a replacement of hardware.

Chapter 5 The LHCb CIC DB schema

 143

Figure 73. FUNCTIONAL PORT model.

An IP INFO (UC 12) as shown in Figure 73 can be considered as an entity too. It is part of
a subnet so it has a subnet mask (UC 9). Also an IP INFO is associated with a name (UC
9). There is a one-to-one relationship between IP INFO and name. The same IP address
can be attributed to several functional ports.

An IPALIAS (UC 14) as shown Figure 73 is an entity. An IPALIAS is assigned to an IP
address. One IP address can have several IP aliases (UC 9).

A LINK TYPE (see Figure 74) (UC 8) has a name. It can be a simple link type, i.e. a TFC
signal or it can be a composite link type, i.e. TFC signal and data signal. The composition of
a link is associated with link_nbr (see section 5.4.4.5 for explanations).

Figure 74. LINK TYPE model.

The CONNECTIVITY (UC 7) entity (see Figure 75) is between two FUNCTIONAL
PORTS. A link can be uni- or bi-directional (UC 8). A link can be enabled or disabled (UC
13) (by performing some masking operations in electronics registers). The

Chapter 5 The LHCb CIC DB schema

 144

CONNECTIVITY entity has a LINK TYPE (UC 8). There is a many-to-one relationship
from CONNECTIVITY to LINK TYPE.

Figure 75. LINK model.

5.6.6 Board components

In some cases, the connectivity of a board must be stored (UC 28). It is the microscopic level.
It has been modeled in a similar way as the connectivity between functional devices but it is
less complicated. Indeed for board components, the port entity has been removed as there are
no details required about the “port” of a chip. It is just necessary to know which port(s) of a
functional device, the chip is connected to. The different link types of a microscopic link are
the same as the ones defined for macroscopic links (otherwise tracking paths is not possible).
The concept of subsystem is removed.

5.6.7 Table schema

Figure 76 shows the table schema of the connectivity part.

Chapter 5 The LHCb CIC DB schema

 145

Figure 76. Connectivity table schema.

The SYSTEM_NAME_LIST table contains the list of the subsystems.

The DEVICETYPE_BOOTING table (resp. DEVICE_BOOTING) contains boot image
information for a certain device type (resp. device). The devicetypeid (resp. deviceid) is a
foreign key to FUNCTIONAL_DEVICE_TYPES.devicetypeid (resp.
FUNCTIONAL_DEVICES.deviceid).

The portid column (sequence of number) is the primary key of the
FUNCTIONAL_PORT_PROPERTIES table. It is to avoid having a complex primary key
composed of (deviceid, port_nbr, port_type and port_way). The deviceid column is a
foreign key on FUNCTIONAL_DEVICES.deviceid so that we know to which functional
device this port belongs.

The ip_address column is a foreign key to IPINFO.ip_address.

Apart from the ip_address, the same remarks can be made for the
HARDWARE_PORT_PROPERTIES table.
The linktypeid, a sequence of numbers is the primary key of the LINK_TYPES table to
allow an easy update of the link type. If we need to remove a simple link from a composite
link, we just update the LINK_TYPE.link_nbr column table. It does not affect the
connectivity table.

The CONNECTIVITY table contains all the links between device ports. PortIDFrom (resp.
PortIDTO) column specifies the start point (resp. end point) of the link. Both of them are
foreign keys to FUNCTIONAL_PORT_PROPERTIES.portID.

The bidirectional_link column is a flag, 0 if the link is unidirectional. The lkused column is
also a flag, 1 if it is used. The linktypeID indicates the type of the link. It is a foreign key to

Chapter 5 The LHCb CIC DB schema

 146

LINK_TYPE.linktypeID. The link_weight column is explained in the chapter. It is used to
get the paths too.

The sysID column specifies to which subsystem(s) this link belongs. Normally, one can
guess to which subsystem(s) a link belongs. Indeed assume that there is a link is between
device A, port 1 and device B, port 2. Device A is part of {subsystem_1, subsystem_2,
subsystem_3} and device B is part of {subsystem_1, subsystem_2}. So the link is part of the
intersection of the two ensembles, i.e. {subsystem_1, subsystem_2}. For performance
reasons, the sysID has been added to the connectivity table. It avoids doing this computation
as it is often queried. However it is important to note that to avoid any inconsistency, this
column is accessed only in read-only mode, i.e. the user or the application program cannot
write into this column.

Figure 77 presents the table schema for the board connectivity.

Figure 77. Board connectivity table schema.

5.6.8 A more complex table schema

Chapter 5 The LHCb CIC DB schema

 147

LHCb is a complex environment. The table schema produced looks simple. But to reach this
level of simplicity was not obvious. Also one could have created a
FUNCTIONAL_DEVICE_TYPE table for each device type table so that it is possible to
define a precise structure of device types. But the main inconvenience of this schema is
whenever there is a new device type; one has to define another table. So the number of tables
can grow quite quickly.

Another alternative for the DEVICE_HISTORY table would have been to design a
HARDWARE HISTORY entity and a FUNCTIONAL HISTORY entity. But it would
have been a problem when a hardware device is IN_USE.
If there is one history table, the content would have been like as shown in Table 13. 12456 is
the deviceID of MUON_TELL1_12.

If there are two history tables, the content would have be as presented in Table 14.
Serial code Status Date of change location
XDG6FDG77 IN_USE 2006/07/21 DU78RC89SL9
GHOFD89878 SPARE 2006/05/18 Build2/Room5
XDG6FDG77 IN_REPAIR 2008/10/23 Frascati
GHOFD89878 IN_USE 2008/10/24 DU78RC89SL9

Deviceid Status Date of change location
12456 IN_USE 2006/07/21 DU78RC89SL9
12456 NONE 2008/10/23 DU78RC89SL9
12456 IN_USE 2008/10/24 DU78RC89SL9
Table 14. Content of the two history tables: on the top the HARDWARE HISTORY table and on the
bottom, the FUNCTIONAL HISTORY table.

So the main disadvantages of the having HARDWARE HISTORY and FUNCTIONAL
HISTORY are:

• There are more rows created. Whenever a hardware device is IN_USE, there is one row
inserted in the HARDWARE HISTORY table and another one in FUNCTIONAL
HISTORY table.

• There is a need of a reference between the two tables as we do not know which functional
device is occupied by which hardware device, especially when two functional devices got
down the same day. The location can be the same for two functional devices. So if the
reference is added, it turns out to be model 1.

• The queries to get the history of a functional device or of a hardware device are more
complex than in the first model.
First model: select * from DEVICE_HISTORY where deviceid=:devid (or
serialcode=:hwcode)

deviceID Serial code Status Date of change location
12456 XDG6FDG77 IN_USE 2006/07/21 DU78RC89SL9
NULL GHOFD89878 SPARE 2006/05/18 Build2/Room5
12456 NULL NONE 2008/10/23 DU78RC89SL9
NULL XDG6FDG77 IN_REPAIR 2008/10/23 Frascati
12456 GHOFD89878 IN_USE 2008/10/24 DU78RC89SL9

Table 13. Content of the history table.

Chapter 5 The LHCb CIC DB schema

 148

Second model: select * from HW_HISTORY t, FCTAL_HISTORY e, where
e.deviceid=:devid and e.date of change=t.date of change and e.location=t.location
(However this is not sufficient!)

Another temptation was to let the users or applications programs store paths. But it would
have been too rigid and difficult to maintain. Moreover there would be too many paths. It is
more elegant to generate paths dynamically from the CONNECTIVITY table. In that sense,
it follows the autonomics principles.

5.7 Verification of the completeness of the table schema

Let us take all the use cases defined in Chapter 4. Table 15 shows which tables and columns
are used to get the information to fulfill the use cases. When no column is specified, it means
that all the columns are needed. All the tables shown in the different table schemas are used
and all the use cases have been satisfied at the level of the database schema. In some cases,
use cases needs extra tables which are internal and dynamically filled. They are hidden to the
users. These tables are used to get paths between devices and will be explained in detail in the
next chapter.

Information
type

Use case
number

Answer in Tables (columns)

UC 1 RECIPES
RECIPE_TAGS
ITEM
RECIPE_DATA
HIERARCHY
REFERENCES

UC 2 RECIPES
RECIPE_TAGS
ITEM
RECIPE_DATA
HIERARCHY
REFERENCES

UC 3 RECIPES
RECIPE_TAGS
ITEM
RECIPE_DATA
HIERARCHY
REFERENCES

UC 4 RECIPES
RECIPE_TAGS
ITEM
RECIPE_DATA
HIERARCHY

UC 5 RECIPES
RECIPE_TAGS

RECIPE

UC 6 FUNCTIONAL_DEVICES
FUNCTIONAL_PORT_PROPERTIES
CONNECTIVITY

Chapter 5 The LHCb CIC DB schema

 149

UC 7 CONNECTIVITY (lkinfo)
UC 8 Other internal tables (see next chapter)

FUNCTIONAL_PORT_PROPERTIES
IPINFO
HARDWARE_PORT_PROPERTIES
FUNCTIONAL_DEVICES

UC 9 FUNCTIONAL_DEVICES
FUNCTIONAL_PORT_PROPERTIES
IPINFO
HARDWARE_PORT_PROPERTIES
IPALIAS
DEVICETYPE_BOOTING
Other internal tables (see next chapter)

UC 10 FUNCTIONAL_DEVICES
DEVICE_HISTORY
CONNECTIVITY
Other internal tables (see next chapter)

UC 11 FUNCTIONAL_DEVICES
HARDWARE_DEVICES
FUNCTIONAL_PORT_PROPERTIES
IPINFO
HARDWARE_PORT_PROPERTIES
DEVICE_HISTORY
CONNECTIVITY
Other internal tables (see next chapter)

UC 12 FUNCTIONAL_DEVICES(devicename)
FUNCTIONAL_PORT_PROPERTIES (deviceid, ip
address)
IPINFO (ipname, subnetMask)
HARDWARE_PORT_PROPERTIES (mac address)

UC 13 FUNCTIONAL_DEVICES(devicename, function)
FUNCTION

UC 14 FUNCTIONAL_DEVICES(devicename)
FUNCTIONAL_PORT_PROPERTIES (deviceid, ip
address)
IPINFO
IPALIAS

UC 15 CONNECTIVITY (lkinfo)

NETWORKING

UC 16 FUNCTIONAL_DEVICES(devicename)
FUNCTIONAL_PORT_PROPERTIES (deviceid)
CONNECTIVTY

UC 17 FUNCTIONAL_DEVICES(devicename,system_name)
FUNCTIONAL_PORT_PROPERTIES (deviceid)
SUBSYSTEM
CONNECTIVITY

UC 18 FUNCTIONAL_DEVICES(devicename,system_name)
FUNCTIONAL_PORT_PROPERTIES (deviceid)
CONNECTIVITY

PARTITIONING

UC 19 FUNCTIONAL_DEVICES(devicename,system_name)
FUNCTIONAL_PORT_PROPERTIES (deviceid)

Chapter 5 The LHCb CIC DB schema

 150

CONNECTIVITY
UC 20 HARDWARE_DEVICES (serialnb, status, location)
UC 21 HARDWARE_DEVICES (serialnb, status, location)
UC 22 FUNCTIONAL_DEVICES(devicename)

DEVICE_HISTORY
UC 23 FUNCTIONAL_DEVICES(devicename)

HARDWARE_DEVICES (serialnb, status, location)
DEVICE_HISTORY

UC 24 FUNCTIONAL_DEVICES(devicename)
HARDWARE_DEVICES (serialnb, status, location)
DEVICE_HISTORY

UC 25 FUNCTIONAL_DEVICES(devicename)
HARDWARE_DEVICES (serialnb, status, location)
DEVICE_HISTORY

UC 26 FUNCTIONAL_DEVICES(devicename)
HARDWARE_DEVICES (serialnb, status, location)
DEVICE_HISTORY

UC 27 FUNCTIONAL_DEVICES(devicename, location)

UC 28 FUNCTIONAL_COMPONENTS (cpnt_name,snbid)
HARDWARE_COMPONENTS (serialnb, status,
location,hwtype)
COMPONENT_HISTORY

UC 29 FUNCTIONAL_COMPONENTS (cpnt_name,snbid)
HARDWARE_COMPONENTS (serialnb, status,
location)
COMPONENT_HISTORY
FUNCTIONAL_DEVICES(devicename)
HARDWARE_DEVICES (serialnb, status, location)
DEVICE_HISTORY

EQUIPMENT
MANAGEMENT

UC 30 COMPONENT_HISTORY

UC 31

FUNCTIONAL_DEVICES (devicename, serialnb,
location)
FUNCTIONAL_PORTS (deviceid, portid)
CONNECTIVITY

UC 32

FUNCTIONAL_DEVICES (devicename, serialnb,
location)
FUNCTIONAL_COMPONENTS
HARDWARE_COMPONENTS
FUNCTIONAL_PORTS (deviceid, portid)
MICROSCOPIC_CONNECTIVITY
CONNECTIVITY

UC 33
FUNCTIONAL_DEVICES (devicename, serialnb,
location)
DEVICE_HISTORY

FAULT
DETECTION

UC 34
FUNCTIONAL_DEVICES(devicename, serialnb)
HARDWARE_DEVICES (serialnb, status, hwtype)
DEVICE_HISTORY

Table 15. Verification of the completeness of the schema.

Chapter 5 The LHCb CIC DB schema

 151

5.8 Conclusion

In this chapter, we have described the CIC DB schema which represents the information about
configuration, connectivity and inventory. It has been obtained using the ERM and the use
cases defined in Chapter 4. It is the first part of the database layer.

The efficiency of the database schema is essential to implement adaptive tools. A priori, there
are some attributes such CONNECTIVITY.lkweight or FUNCTIONAL_DEVICES.node
which can appear unclear in this chapter. In the next chapter, we will present how to
automatically generate and update the routing and destination tables and how dynamically get
all the paths between two modules. Then the use of these parameters will become more
precise. It is the second part of the database layer with its set of PL/SQL routines.

Chapter 5 The LHCb CIC DB schema

 152

References

[1] DATABASE SYSTEMS, a practical approach to design, implementation, and
management written by Thomas Connolly and Carolyn Begg, 2002. Third Edition ADDISON
WESLEY. ISBN 0−201−70857−4. 1236 p.

[2] List of requirements and use cases regarding the PVSS configuration framework for LHCb
http://lhcb-online.web.cern.ch/lhcb-online/configurationdb/default.htm#Doc.

[3] R. Jacobsson, TFC and Readout Partitioning, LHCb Specification, February, 2006. EDMS
706253 v1.0.

[4] ORACLE, Oracle® Database, SQL Reference 10g Release 2 (10.2), December 2005.
p1428. B14200-02. 1428 p.

[5] How many primes are there, http://primes.utm.edu/howmany.shtml#pi_def.

[6] The 1,000 smallest prime numbers, http://www.math.utah.edu/~pa/math/primelist.html.

Chapter 5 The LHCb CIC DB schema

 153

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 154

Chapter 6 Automated creation of routing and destination
tables using PL/SQL

This chapter describes the PL/SQL programs, part of the database layer. First, it gives some
definitions about how I have modelled the nodes of the connectivity of a subsystem. The
connectivity of the LHCb experiment is then represented as an ensemble of the connectivity
of the different subsystems. Secondly, it describes the principles of the algorithm I have
implemented to create the routing tables. It has been written as a PL/SQL package. Thirdly it
presents the creation of the destination table, an extension to the algorithm that I used to
handle the TFC partitioning and the automated creation of the dhcp config file. It is one of the
key elements to build a set of autonomic tools.

Finally, it presents other PL/SQL programs I had implemented when the SQL statements were
too complex and not suitable to be embedded.

6.1 Introduction

6.1.1 Problem

A routing table (for the DAQ switches) or a destination table (for the TFC switch or for the
DHCP servers) provides information on how to reach possible destinations. To allow the
creation of automatic routing or destination tables, we need to know if a device can be a
destination, i.e. if it can receive packets. Typically a PC in the trigger farm will be a possible
destination whereas a switch will not be a possible destination.

The query “Give all the paths (in a subsystem) which goes through a given device” is a
problem too. As finding the longest path in a graph is a NP complete problem [1], finding all
the paths is also a NP complete problem. So there is no algorithm which can solve this
problem in a polynomial time, i.e. rapidly. Usually heuristic algorithms are used (tabu search
[2] or genetic [3] algorithms for example). In our context, these types of algorithms could not
be used as the output of the algorithm must be deterministic, i.e. same output at each
execution of the algorithm.

We introduce a parameter M, the maximum path length, i.e. the maximum number of hops to
put a limit on the research of paths. In the LHCb context, the topologies were such that it was
sufficient to reduce the complexity of the problem. So the problem can be reformulated as
finding all the paths whose length is less than M. M is set by the user or the application
program.

The execution time depends on the topology of the graph, i.e. the number of vertices and the
maximum path length found (the worst case is when it is a fully-connected graph because
there are more paths).

The algorithm below has been described in [4].

6.1.2 Intermediate and host nodes and paths

A device can be either an intermediate or a host node. An intermediate node (switches,
splitters, and L0 electronics) transfers the data without processing and manipulating it. A host
node processes and modifies the data such as TELL1 boards and PCs. A host node has a more
complex structure than an intermediate node. For example, the input data of a TELL1 board is
generally a digital signal. The output data of a TELL1 board is zero-suppressed and formatted

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 155

according to the MEP protocol. Figure 78 shows a slice of the DAQ connectivity. Orange
boxes are host nodes (VELO_L1_21 and FARM0101 for instance are host nodes) and non-
filled boxes are intermediate nodes such Force 10.

The FUNCTIONAL_DEVICES.node column, which is a flag, contains this information.
The user must specify if the functional device is a host node (node=1) or an intermediate node
(node=0). A host node is also the last device in the subsystem flow. So referring to Figure 78,
VELO_L1_21 will have node set to 1 whereas Force 10 will have node set to 0.

Figure 78. Concept of host and intermediate nodes.

The concept of host and intermediate nodes is very useful to determine whether a device can
be a destination. Only a host node can be a destination in a routing and a destination table.

In our context, a path can be defined as a sequence of nodes where there is one host node (the
first node is not taken into account) and the last node is a host node. In other words, the
pattern intermediate node - host node - intermediate node is not allowed in a path. Referring
to Figure 78, [DS_SWITCH_01, FARM0101, DS_CTRLS_01] is not an allowed path as there
is a host node between two intermediate nodes. A path can contain at most 2 host nodes. The
position of a host node in a path is either the starting or terminal node.

The maximum number of hops (M) corresponds to the maximum number of nodes in a path.
This parameter is a characteristic of the network.

A routing path is a special path which starts from an intermediate node (Force 10) and ends at
a host node (FARM0101 for instance).

This concept of host and intermediate nodes allows splitting the huge connectivity of the
whole LHCb experiment into smaller parts which corresponds to the subsystems. It has been
applied for all the subsystems (of the detector and Online). Indeed there is no need to look for
the RICH connectivity if a user or an application searches paths between a device A and a
device B in the VELO subsystem.

6.1.3 Link and path weights

To compute and find the routing paths easier, we have introduced the concept of link and path
weights.

The CONNECTIVITY.link_weight column represents the weight of a link noted W(L) and
automatically set to (see Figure 79):

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 156

• 0 if the link is between 2 intermediate nodes

• 1 if the directed link is between a host node and an intermediate node

• 2 if the directed link is between an intermediate node and a host node.

• 3 if the link is between two host nodes (although not used here)
The path weight W(P) is defined as the sum of the link weights along the path. By using the
definition of the routing path, we can derive the following theorem which will be used to find
the subset of routing paths from paths.

A path P of length J is a routing path of length J

where W(L)i corresponds to the weight of the ith link in the path P. Thus, a path of length J is
a routing path of length J if and only if the all the weights of the links (so the J-1th links) are
equal to 0 and the weight of the last link (the Jth link) is equal to 2. The proof is given in the
Appendix A. Figure 80 shows an example of a routing path.

Figure 79. Link weight concept.

Figure 80. Example of a routing path.

6.2 Algorithm to generate routing tables

6.2.1 Routing tables (reminder)

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 157

A routing table consists of providing the following information:

• IP address of the destination;

• Port number to which the IP packet should forwarded;

• IP address of the interface of the next hop;

• Subnet mask of the next hop.
The concept of routing tables has been explained in detail, in Chapter 3, section 4.

6.2.2 Principles of the algorithm

Let us denote L(node i, node j), the link between node i and node j, W(L) the weight of the
link and S(node i, node j, node k,…., node t) a sequence of nodes between node i and node t.
W(S) is the weight of the sequence (sum over the weight of the links which compose the
sequence)
We give an overview of the algorithm which finds routing paths using the connectivity of the
DAQ network. The input parameters are the name of the router and the parameter M (default
value 10). The steps are as followed:

1. Simplify the connectivity of the system by removing the port level. For instance if
there is two links between device A and device B, we just consider it as one link
between device A and device B. It is for efficiency reasons.

2. Revert all the links which are bidirectional so that we really find all the paths. For
instance if there is a bidirectional link between device A and device B. It is saved as
one link starting from device A to device B and one link from device B to device A.

3. Find all the links which starts from the given router and which have a link weight
equal to 2. We then found all the routing paths of length 1.

4. Group the links by per of two by making sure that it verifies the four conditions:

a. the second node of the first link is equal to the first node of the second node
(necessary condition to build a path);

b. the first node of the first link is not equal to the last node of the second link (to
avoid cycles);

c. the weight of the first link is not equal to 2 (to verify the routing path condition
where only the last link should have a weight equal to 2).

d. Compatibility of the link types between the two links to ensure a consistent
path. If a link carries data traffic and another link carries controls traffic, the
two links cannot be compatible. But if a link carries both controls and data
traffics and another link carries only data traffic, then the two links are
compatible and the type of this link pair is then data traffic only.

In other words, the pair of links (which is a sequence of 3 nodes) is valid if and only if
S(node i, node j, node k)= L(node i, node j) and L(node j, node k) where node k ≠
node i and W(L(node i, node j))≠2.

5. At each iteration, add a link L(node u, node v) to a sequence of nodes S(node i, node
j, …, node t) already found if it verifies the following conditions:

a. The weight of the sequence is not equal to 2 otherwise the sequence is already
a routing path so we don’t touch it.

b. node u= node t. The first node of the link should correspond to the last node of
the sequence of the nodes (otherwise there is no communication between
them).

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 158

c. node v is not already in the sequence of nodes to prevent cycles.
d. The link type of L(node u, node v) should be compatible with the link type of

the sequence of nodes.

If the node passes the conditions, it is added to the sequence of nodes and the weight
of the sequence is updated and the type of the sequence too.

So at each iteration, the length of the sequence is increased by one. The loop stops
when all the paths found are routing paths, i.e. all the weight of the paths are equal to 2
or the path length is greater than M.

6. Each routing path is now completing with the port numbers.

7. Then for each distinct destination found (last node in the routing path), select the
shortest path found.

8. Information about the IP and MAC addresses is performed dynamically (using the port
number of the device) when loading the routing table of the given switch to make the
updates of the routing tables easier.

6.2.3 Convention

Tables which are suffixed by “_TEMP” are temporary tables. For instance, there is
PATH_LINES which is a real table and PATH_LINES_TEMP which is a temporary table
with the same structure as PATH_LINES. These tables are not represented in Figure 81 for
clarity purposes. An exception has been made for LINK_PAIRS and
AGGREGATED_LINKS which are temporary tables, because we estimated that they are
important tables. There are no constraints as we do not define constraints for temporary
tables. Intermediate results are stored in temporary tables.

6.2.4 Initialization

The input parameters of the routing algorithm are the name of the switch (the one for which
we want to generate the routing table) and M..

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 159

Figure 81. Path modeling.

The algorithm to generate the routing table is based on the following steps:

• Create the AGGREGATED_LINKS table (a temporary table)9 which contains all the
links between devices. If a link is bidirectional, we store the reverted link. The principles
of this creation are shown in Figure 82. The port number concept is not considered. For
instance if the Force 10 router is connected via 10 links to a distribution switch. In the
AGGREGATED_LINKS table, one link is considered between the Force 10 and a
distribution switch. It is derived from the connectivity table (see Figure 81). This step
permits to reduce the number of links to be handled.

9 Temporary tables have no foreign key and no primary key. That is why LINK_PAIRS and
AGGREGATED_LINKS seem disconnect from the schema. They are temporary tables as there is no need to
keep their content.

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 160

Figure 82. Generating the AGGREGATED_LINKS table using the CONNECTIVITY table.

• Create the LINK_PAIRS table (a temporary table) which contains all valid pairs of

successive links (one node in common). For instance, the link between Force ten and
distribution switch 1 and the link between distribution switch 1 and Farm node 1.

To create the LINK_PAIRS table, we perform a self-join of the
AGGREGATED_LINKS table with the following constraints:

o Link1 is defined by (Node_1, Node_2) and Link2 is defined by (Node_2,
Node_3) (referring to Figure 81) where Node_2 corresponds both to Node_to
of link1 and to Node_from of link2.

o The link_weight of link1 must be equal to 0 because we want to find routing
paths (i.e. it starts and ends from/at a switch and, as we are looking for pairs of
links, we exclude the switch-host links).

• The PATH_LINES_TEMP table is initialized with the elements from the
AGGREGATED_LINKS (to find path length equal to 1) and LINK_PAIRS table
which have the switch given as input parameter as a starting node (Node_1 column).

We then have found paths which have a length equal to 1 or 2. These paths are inserted in
the PATH_LINES_TEMP table. If the path length is equal to 1, then the path is inserted
as a row into the PATH_LINES_TEMP table using the columns Node_1, Node_2. If the
path length is equal to 2, then the path is inserted as a row into the
PATH_LINES_TEMP table using the columns Node_1, Node_2, Node_3.

6.2.5 Body

This subsection explains how we find the routing paths.

We iterate over i which represents the path length.

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 161

At each iteration of i, a join between the LINK_PAIRS and the PATH_LINES_TEMP
tables is executed. This means that a path P, with W(P)=0 (i.e. having not reached a host) is
completed with an element from LINK_PAIRS whose first link is equal to the last link of P.

If no such pair exists, the path P is removed. There may be more than one pair which satisfies
the conditions. Thus if there are N possible pairs, these N possible pairs will be appended to P
and there will be N new paths (i.e. N new rows in the PATH_LINES_TEMP).

At the end of iteration i, we have found all the paths of length i and inserted them in the
PATH_LINES_TEMP table and we have filled the i +1 Node columns of
PATH_LINES_TEMP table.

For each iteration i, the detailed description of the steps is as follows:

1. In the PATH_LINES_TEMP table, select the paths P where W(P)=0. (The last
column filled is Node_i).

2. Find all the possible pairs of links where (Node_i-1, Node_i) is equal to (Node_1,
Node_2) of LINK_PAIRS table and check that there is no cycle (i.e. a node
appearing twice in the path).

3. Insert these new valid paths in the PATH_LINES_TEMP table. So the Node_1 to
Node_i+1 columns are filled in.

4. Delete the old paths where W (P)=0 and Node_i+1=0.

5. Increment i by 1.

6. Stop the loop if i is greater than M or if all the paths are routing paths, i.e. all paths
verify W (P)>0.

7. Go back to the port level for the first and last links and insert the portids of the
network interface starting the path, ending the first link and ending the path into
ROUTING_TABLE_TEMP. Finally, we resolve multiple paths to a given
(destination, network interface) by setting the routingpathused column to 1 for the
shortest routing path (required by the DAQ team).

8. Insert the valid routing paths found in PATH_LINES_TEMP into PATH_LINES,
in ROUTING_TABLE_TEMP into ROUTING_TABLE.

Commit to delete the content of the temporary tables, except the content of
AGGREGATED_LINKS and LINK_PAIRS. They are kept as they can be reused
for another switch if it is part of the same subsystem.

This algorithm has been tested against several network architectures including full mesh
layouts (see Chapter 9).

Remark on step 6:
If the loop is stopped because of M, paths whose length is greater than M are not found. We
trust the user or the application in setting a correct value of M.

6.2.6 Routing table

The PATH_LINES table contains all the routing paths of a switch in detail with the different
hops. The pfromid0, ptoid0 and ptoid1 columns of ROUTING_TABLE respectively
represent the portid of the network interface of the nodeid_start0, the portid of the network
interface of the next hop and the portid of the destination network interface.

The port number to which the packet should be sent is retrieved using pfromid0. The IP and
MAC addresses of the next hop are found using ptoid0 and the IP address of the destination is
known using ptoid1.

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 162

The routing paths used to program the switch are stored in the ROUTING_TABLE table
with routingpathused set to 1. It allows a better update and management of paths in case of a
problem with a port or a device.

A join between the ROUTING_TABLE table, the FUNCTIONAL_PORT_PROPERTIES
and IPINFO tables permits to get the IP address and the subnet mask. We do a join between
the ROUTING_TABLE table and the FUNCTIONAL_PORT_PROPERTIES and
HARDWARE_PORT_PROPERTIES tables to get the mac_address. To avoid many
updates in case of a MAC address or an IP address changes, the two joins are performed on
the fly, i.e. when the user asks for loading the routing tables.

All the routing tables, i.e. all the routing tables of the DAQ switches, are stored in
ROUTING_TABLE (one table only).

6.2.7 PL/SQL package

All the steps which have been previously described have been included in a PL/SQL package,
routingtable_pck (the interface is shown in Appendix B). The package body has 1797 lines
of code.

PL/SQL is a proprietary (Oracle) language; the code is executed at the server-side. PL/SQL
can be embedded in other languages such as JAVA, C, PERL, etc. A PL/SQL package is
stored in its compiled form. The parsing of SQL queries is performed only at compiling time.

When a procedure of a package is called, first Oracle gets the package and loads it into
memory if it is not already there. So performance is improved as parsing SQL queries can be
quite time consuming depending on the complexity of the query.

By using PL/SQL one avoids overloading of the network by very long sequences of SQL
queries. Also the maintenance of the routing tables is easier. Whenever there is a change in
the CONNECTIVITY TABLE, ROUTING_TABLE and DESTINATION_TABLE related
to DAQ or TFC system are recreated.
Generating a routing table is performed using 4 functions of routingtable_pck.

1. The first function creates and filled the AGGREGATED_LINKS and LINK_PAIRS
tables.

2. The second function finds all the routing paths which start from the given devices
using the logical view. These are stored in the PATH_LINE_TEMP table.
STARTEND_TEMP is also filled with the two first and the two last nodes. It will be
used to select the right port interfaces.

3. The third function maps the start (the first link) and the end (last link) of the path with
PORT_PROPERTIES.portid with all the checks (same link type, bidirectional link
used, link used or not) and inserts them in ROUTING_TABLE_TEMP. One routing
path is selected by (destination, network interface) among the valid paths, i.e. where
no link is disabled or broken. Set routingpathused=1 to the selected routing paths.

4. The fourth function deletes the old entry related to the given switch and inserts all the
results in the tables PATH_LINES and ROUTING_TABLE.

6.2.8 Completeness of the algorithm

The routing algorithm finds all the paths less than M (less than 10 in the context of LHCb).
The proof relies on the “join” operator reliability. Figure 83 illustrates the concept. If a valid
path is not found with a length less than M, it means that during the join operation the code
could not find a pairs of links which matches the current path. It means that this pair of links

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 163

is missing. So it means that this pair of links is not in the LINK_PAIRS table which is the
result of a self-join with constraints of the AGGREGATED LINKS TABLE. The join
operator in SQL is known to be reliable. So if this pair of links is not in the table, it means that
the pair of links fails to satisfy the constraints, which is in contradiction with the fact that is a
valid path.

Figure 83. Concept of finding the paths. The path starting from Node 1 to Host Node i+2 is a routing path.
The other path ending at Node i+2 is still not finished, we go on if the i+3<M.

6.3 Extensions of the routing table algorithm

6.3.1 Partitioning

6.3.1.1 Destination table

In Chapter 2, section 2.3, partitioning has been handled using the destination of the TFC
switch. A destination table of a device consists of the following columns (which are almost
similar to ROUTING_TABLE):

• Deviceid of the node1 (which starts the path). This node corresponds to the deviceid of
the functional device for which the destination table is generated. For instance, if we
generate the destination table of the TFC switch, the value of this column corresponds to
the deviceid of the TFC switch.

• Portid of the node1 (from which the link starts). This column permits retrieving
information about the port which starts the path. In the case of the TFC switch, it
corresponds to the port IDs of the output ports.

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 164

• Portid of the last node (at which the link ends) allows retrieving information about the
port which ends the path. In the case of the TFC switch, it corresponds to the port IDs of
the input ports of the destination devices, i.e. the TELL1 boards.

• Deviceid of the destination devices.

• System name which corresponds to the list of subsystems of which the destination device
is part.

• Pathused which indicates if the path is functional (1) or not (0). For instance if a device is
broken and not replaced or if a device needs to be excluded for debugging reasons, for
instance, all the paths which go through that device are disabled, i.e. pathused=0.

All the destination tables which are generated are stored in DESTINATION_TABLE.

6.3.1.2 Algorithm principles

The routing algorithm has been adapted to generate a destination table as the concept is
similar. The main difference is that the destination table can be generated for a host node. So
the computation of the path weight is slightly different. However the algorithm principles are
the same in both cases.

1. The first step is to determine whether the destination table is for a host or intermediate
node.

2. If it is a host node, the path weight should be equal to 3 =(1 +2).

3. If it is an intermediate node, the path weight should be equal to 2 = (0+2). It is the
same as for the routing tables.

Also all the paths are inserted. In other words, it is possible to have several paths which start
from the same pair (deviceid of the first node, portid) unlike the routing tables.
The functions which are used to generate the destination tables are also included in the
routingtable_pck PL/SQL package.

6.3.1.3 Example of the TFC switch

Figure 11, in Chapter 1, shows the connectivity of the TFC. The readout supervisors (ODIN)
and the TELL1 boards are respectively the sources and destinations. Thus they are host nodes,
the other devices are intermediate nodes.

All the links in the TFC system are unidirectional. The TFC switch can only send information
to TELL1 boards, which are the only possible destinations in that case.

A readout supervisor can not be a destination as it is a source (it sends information but does
not receive any data via the TFC switch). The destination table of the TFC switch will contain
around 350 distinct destinations (equal to the number of TELL1 boards).

The TFC system needs to know the output ports of the TFC switch which drive the
subsystems in the partition to configure the switch.

Consider the following example. An extract of the TFC destination table is shown in Table
16.

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 165

TFC output
port nb

Port
way

Port type Destination device
name

System ID of the
destination

0 2 None VELO_L1FE_04_00 1155
0 2 None VELO_L1FE_04_01 1155
1 2 None VELO_L1FE_07_04 1365
1 2 None VELO_L1FE_07_04 1365
2 2 None RICH1_L1FE_09_08 4845
2 2 None RICH1_L1FE_08_02 4845
3 2 None RICH2_L1FE_00_01 5865
3 2 None RICH2_L1FE_00_02 5865
10 2 None L0MUON_L1FE_00_03 98355
10 2 None L0MUON_L1FE_00_01 98355
10 2 None L0MUON_L1FE_00_02 98355
4 2 None IT_L1FE_09_00 26445
4 2 None IT_L1FE_09_00 26445
4 2 None IT_L1FE_09_00 26445
5 2 None TT_L1FE_03_01 28905
5 2 None TT_L1FE_03_01 28905
5 2 None TT_L1FE_03_01 28905
6 2 None OT_L1FE_00_12 13485
6 2 None OT_L1FE_00_11 13485
6 2 None OT_L1FE_00_10 13485
7 2 None OT_L1FE_02_05 16095
7 2 None OT_L1FE_01_21 16095
7 2 None OT_L1FE_01_09 16095
8 2 None PRS_L1FE_03_00 915
8 2 None PRS_L1FE_01_00 915
8 2 None ECAL_L1FE_02_00 795
9 2 None ECAL_L1FE_04_00 795
9 2 None ECAL_L1FE_03_00 795
11 2 None HCAL_L1FE_01_01 885
11 2 None HCAL_L1FE_01_00 885
12 2 None MUON_L1FE_01_00 71355
12 2 None MUON_L1FE_01_00 71355
13 2 None MUON_L1FE_01_00 73365
13 2 None MUON_L1FE_07_00 73365
13 2 None MUON_L1FE_07_00 73365
14 2 None L0CALO_L1FE_00_00 105465
14 2 None L0CALO _L1FE_00_01 105465
14 2 None L0CALO _L1FE_00_02 105465
15 2 None L0DU _L1FE_00_01 119685
15 2 None L0DU _L1FE_00_02 119685
15 2 None L0DU _L1FE_00_03 119685

Table 16. Extract of the TFC destination table.

For example, for a partition consisting of {VELO, RICH, OT_A}, the SQL query:

select distinct port nb from DESTINATION_TABLE r, FUNCTIONAL_DEVICES t,
SUBSYSTEM_LIST l where r.nodeid_start=t.deviceid and
t.devicename=’TFC_SWITCH’ and l.system_name=’VELO’ and mod (r.systemid,
l.systemid) =0.

will only select the destination devices belonging to these subsystems. The result of the query
is 0 and 1.

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 166

The same query is performed for RICH and OT_A so that each subsystem can be properly
associated with 1 or two output ports of the TFC switch.
The selected destinations with their associated output port(s) are written in bold in Table 16.

6.3.2 Generating the DCHP config file

The destination table is generated for the DHCP server to get all the host nodes which can get
their IP address from the given DHCP server.

It has been integrated in a Perl script which is described in the next chapter.

6.4 Other PL/SQL programs

Besides the PL/SQL package routingtable_pck, there are other PL/SQL programs which
have been implemented to avoid embedding long sequences of SQL queries (essentially
updates and insertions).

• UpdateDeviceHistory : a PL/SQL function which updates the history table in case the
user deletes a functional or a hardware device further to mistypes.

• UpdateBoardComponent: a PL/SQL function which updates the status of the
microscopic devices (components of the board) according to the change of the status of
the motherboard. (the status should be different from TEST).

• SwapTwoDevices: a PL/SQL function which swaps two devices and checks that this
operation is allowed (for instance same number of ports connected and same device type).

• InsertSubsystem: A PL/SQL function which inserts a new subsystem and attributes it a
systemID.

• ComposeFunctionID: a PL/SQL function which returns the function ID given a list of
function names.

• DecomposeFunctionID: a PL/SQL function which returns the function names given a
function ID.

• InsertIPaddress: a PL/SQL function which inserts an IP address. It is used when
inserting a port of a device. There is a need to know if the IP address already exists or not.
If not, it inserts it.

• UpdateIPaddress: a PL/SQL function which updates an IP address further to a mistype
or a change. It performs the update for IPINFO, IPALIAS and PORT_PROPERTIES
tables.

• TestUseBoardCpnt: a PL/SQL function which sets the status of the microscopic devices
(components of the board) to TEST when the motherboard goes to TEST.

• InsertTestBoard: a PL/SQL procedure which inserts a test board. The name of a board
test is automatically generated by the CIC DB.

• CreateTableSchema: a PL/SQL function which creates the CIC DB schema (tables,
indexes and constraints).

• DropTableSchema: a PL/SQL function which drops the current CIC DB schema.

6.5 Conclusion

This chapter describes how routing and destination tables can be generated using the
information stored in the CIC DB. The algorithm is based on two main concepts:

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 167

• Intermediate and host nodes to make the distinction between possible destinations for the
routing table and also to put boundaries to the network of a subsystem

• Paths and path weights to compute the correct paths by avoiding cycles.
The algorithm implemented in PL/SQL is used mainly for fixed queries such as:

• generating the routing tables of the DAQ switches;

• generating the destination table of the TFC switch for partitioning;

• generating the destination table of the DHCP servers to create the dhcp config file.
All the routing tables (DAQ switches) and destination tables (TFC switch and DHCP servers)
are respectively in the ROUTING_TABLE and DESTINATION_TABLE. They are
automatically updated.

It also describes the other PL/SQL codes which have been implemented when a query was too
complex or implies too many checks. It was the case for some insertions and updates.

So the implementation of the database layer has been described over Chapter 5 and 6. The
next chapter will focus on the object layer.

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 168

References

[1] M.R.Garey and D.S.Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1990. W. H. Freeman & Co. New York, NY, USA. 0716710455. 338 p.

[2] Gendreau M. An introduction to tabu search. In: Glover F, Kochenberger GA, editors.
Handbook of metaheuristics. Boston, Dordrecht, London: Kluwer Academic Publishers; 2003.
p. 37-54.

[3] Rudolph, S. On a Generic Algorithm for the selection of optimally generalizing neural
network topologies. Proceedings of the 2nd International Conference on Adaptive Computing
in Engineering Design and Control’96. I.C. Parmee (ed.), University of Plymouth, March
26th-28th, Plymouth, United Kingdom, 79-86, 1996.

[4] L.Abadie, Configuring the LHCb Redaout Network using a database, August 2006.
IEEE Transactions on Nuclear Science, June 2006, Vol. 53, number 3, Part I of three parts.
14th Conference on real time (RT 2005) Stockholm, Sweden, June 4-10, 2005. p995-1001.

Chapter 6 Automated creation of routing and destination tables using PL/SQL

 169

Chapter 7 Implementation of the object layer

 170

Chapter 7 Implementation of the object layer

This chapter describes the object layer which consists of a set of libraries which helps
in building autonomic tools to interact with the CIC DB. The first section presents the
two Perl scripts I wrote to generate config files for the DHCP and DNS servers. I also
present an example of autonomics setup to configure the DHCP and DNS further to a
change in the DAQ network. The second part explains the implementation details of
the CIC_DB_lib library, namely its API, its structure and its features. It is the core of
the object layer as it provides functions to manipulate the information about
connectivity and inventory/history. I implemented the library in such way that
autonomics tools can be built on top of it by making it intelligent. The third part
describes the implementation of the two bindings of CIC_DB_lib. I also discuss the
issues during the implementation. Finally the last part gives an overview of the PVSS
library (provided by the CERN PVSS Support group) built for recipes.

7.1 Use of Perl scripts to generate config files

7.1.1 DHCP config file

This section describes how the dhcp config file can be generated using the
connectivity information stored in the CIC DB. This method will be used to configure
the controls network interfaces of PCs in the farm, TELL1 boards and readout
supervisors. The IP addresses for the data network interfaces will be attributed
differently (but it is not covered in this thesis as it is not fixed yet).

7.1.1.1 Methodology

To create the dhcp config file, we use the following method [1]:

• Get the host nodes by generating the destination table of the given dhcp server
name. Using the destination table (especially the portid of the last node) as
described in Chapter 2 section 2.2.2.8, one can retrieve the PORT PROPERTIES,
HW PORT PRORPERTIES and IPINFO tables, containing network information
(MAC, IP and subnet addresses).

• Get the boot images. The boot image information is usually linked to the device
type (CPU architecture, kernel version for instance). In most cases, all the farm
nodes will have the same boot image, same remarks for the TELL1 boards (per
subsystem) and the readout supervisors. However it may occur that a host has its
specific boot image. To get the right boot image, we perform the 2 following steps:

o Step 1: look if the given host name has a specific boot image in the
DEVICE_BOOTING_TABLE in the CIC DB. If we find an entry
corresponding to this node, we select it. If not, go to step 2.

o Step 2: attribute it the boot image associated with the node’s devicetype.
We get it from DEVICETYPE_BOOTING_TABLE.

• Getting the subnet ID. In the CIC DB, the subnet mask is stored instead of the
subnet ID. However, one can compute the subnet ID given the subnet mask and the
IP address.

For example:

Chapter 7 Implementation of the object layer

 171

IP address: 137.192.25.15 and Subnet Mask: 255.255.255.0.

1. Convert the IP address and the Subnet Mask to binary formats.

IP address: 100001001.11000000.00011001.00001111
Subnet Mask: 11111111. 11111111.11111111.000000000
We consider these two numbers as 2 vectors (32x1).
2. Perform a point wise10 multiplication of the 2 vectors.

The subnet ID is then equal to 100001001.11000000.00011001.00000000
3. Convert it to decimal format : 137.192.25.0.

Group the hosts by subnet IDs as follows:
 subnet 137.192.25.0 netmask 255.255.255.0 {
 group {
 host pctest32 {

hardware ethernet 00:00:A2:11:25:B4;
fixed-address 137.192.25.15;
filename “lynx_boot_23.nbi”;
}
host { ... }
} }

 subnet ...

At this stage, we have all the necessary information to build the dhcp config file. The
next subsection will focus on the implementation.

7.1.1.2 Generating and formatting the dhcp config file

10 Point wise multiplication is as follows. Consider two vectors v(x,y) and u(x’,y’). The point wise
multiplication of vectors v and u is another vector z(xx’,yy’).

Chapter 7 Implementation of the object layer

 172

Figure 84. Implementation principles.

Figure 84 describes how the DHCP config file has been generated.

It is based on a Perl script. Perl is one of the most used languages for writing Linux
scripts. Perl also includes a lot of packages (XSLT, DBI, etc…) and is very
convenient for string manipulation. Also I am more familiar with Perl than with
Python. For security reasons, SQL statements have been embedded in the Perl script
directly. We did not want to include functions in the CIC_DB_lib (as mentioned in
Chapter 3) which allow creating DHCP and DNS config files and make it accessible
to anybody. These two Perl scripts will be used only by the DAQ network system
administrators and they agree with this method and the choice of Perl.

Any time there is a change in the configuration of the network, the following steps
should be carried out:

• The generic options are put in the “dhcp_options.xml” file provided with the
application. There should one option per line. Referring to Figure 84, the generic
options are written in red.

• Execute the Perl script, with the dhcp server name as input argument. It is case-
sensitive. The Perl script performs three steps.

o It obtains the network information (IP and MAC addresses,
subnet_mask and boot image) from the CIC DB using Oracle XML[2]
features such as “xmlelement”.

o It writes the results in the XML file “dhcp_file.xml”. The previously
defined generic options are printed at the beginning of

Chapter 7 Implementation of the object layer

 173

“dhcp_file.xml”. The result of the query is encapsulated in XML tags.
The results are ordered by subnet ID.

o It generates the dhcp config file using XSLT. XSLT is used to convert
the XML file obtained into a dhcp config file. To do so, there is an
XSL file which reads the XML file. It converts the XML tags into
words which are understandable by a dhcp server.

For instance, the XML tag <ethernet_add> is converted into hardware
ethernet, <ipname> to host, etc.

The output of these operations is the dhcpd.conf. All the files created and used are
located in the same directory. The dhcpd.conf is copied in /etc/... manually by the
network administrator. It is for security reasons. The Perl script
“dhcpCfg_generate.pl” can be found in Appendix C.

7.1.1.3 Excluding nodes

If for any reason, a host needs to be excluded from configuration by a given dhcp
server, it can be disabled by setting FUNCTIONAL_DEVICES.nodeused to 0. This
function will exclude all the links affected by this change (CONNECTIVITY.lkused
set to 0) and as a consequence, will update the DESTINATION_TABLE.pathused
to 0 if one link has been disabled in a path.

When a host is disabled in the table, the Perl script “dhcpCfg_generate.pl” needs to be
rerun.

Then the hosts should be included back again. This has to be done because the host
was disabled for generating a correct DHCP config file for a given DHCP server.

The following example illustrates this.

Figure 85. Example of a topology where it is mandatory to exclude nodes.

Assume a connectivity situation as in Figure 85. There are two DHCP servers, DHCP
server 1 and DHCP server 2. The DHCP server 1 configures nodes from node_1_1 to
node_1_32 and DHCP server 2 configures nodes from node_2_1 to node_2_32.

Both DHCP servers 1 and 2 could configure all the nodes. Therefore the destination
table of DHCP server 1 is the same as that of DHCP server 2. It will contain all the
host nodes, i.e. from node_1_1 to node_1_32 and from node_2_1 to node_2_32. So

Chapter 7 Implementation of the object layer

 174

the destination table for both DHCP servers 1 and 2 will contain too many reachable
hosts. Consequently the generated dhcp config file may be wrong depending on the
network policy11. So it is important to provide a solution if this case occurs. Then it
will be up to the network administrator to decide what to do.

This problem can be solved by disabling hosts. The destination table of DHCP server
1 should contain only hosts from node_1_1 to node_1_32. Hosts from node_2_1 to
node_2_32 must be excluded. When they have been excluded the Perl script
“dhcpCfg_generate.pl” should be executed to generate the dhcp config file for DHCP
server 1. Then the excluded nodes must be included back so that the dhcp config file
for DHCP server 2 can be generated. An example of the C code12 is in Appendix D. It
shows how this case can be handled.

In the same way, links can be disabled by updating CONNECTIVITY.lkused
column.

In the previous example, another way to do could have been to exclude the link
respectively between switch A and switch B (respectively switch A and C) to generate
the dhcp config file for DHCP server 2 (resp. DHCP server 1).

7.1.1.4 Including nodes

The DAQ farm will grow over time as more PCs will be added. How will the
generation of the dhcp config file be affected by the arrival of new PCs or new
TELL1 boards?

The impact is rather slight as the new devices and their connectivity only have to be
added to the CIC DB. The Perl script “dhcpCfg_generate.pl” should be rerun. If the
insertion is done from PVSS, “dhcpCfg_generate.pl” can be automatically executed
using a PVSS script.

7.1.1.5 Autonomics set up

The use of autonomics principles is reflected through 7.1.1.3 Excluding nodes and
7.1.1.4 Including nodes. The human intervention is reduced. Using the following
setup, most of the reconfiguration steps are automated as illustrated by Figure 86. The
user makes the changes on the DAQ network such as adding new farm PCs or
updating IP addresses using PVSS panels. Then all the changes are saved in the CIC
DB using the PVSS extension of CIC_DB_lib. It will dynamically update the routing
and destination tables if needed. If the changes are successful the PVSS panel asks for
the list of DHCP servers to the CIC DB. Then using DIM and this list, the Perl script
“dhcpCfg_generate.pl” is automatically executed on each DHCP server.

So in this setup, the user did not have to recreate the routing tables or to rerun the
“dhcpCfg_generate.pl manually.

11 Depending on the network setup, it does not matter if the dhcp config file contains more hosts than
needed as the DHCP server will never get a BOOT request from them.
12 It is written in C because it calls functions part of the CIC_DB_lib, namely to disable and enable the
hosts)

Chapter 7 Implementation of the object layer

 175

Figure 86. An autonomic setup to update the dhcp config file using PVSS.

7.1.2 DNS files

The DNS provides the correspondence between IP address and IP name. Its principles
have been described in Chapter 2 section 2.2.2.9. We have tried to adopt a similar
approach as for the DHCP config file. The information which needs to be predefined
is the name of the domain, the name of the authoritative DNS server and the maximal
number of times that a DNS config file can be recreated in one day. They are pretty
static so they are saved as global variables in the script.

To create the DNS files, we have split the code into 2 parts, one part which generates
the forwarding file (given an IP name, retrieve the IP address) and the second part
which generates the reverse file (given an IP address, get the IP name). The whole
Perl script “dns_generate.pl” can be found in Appendix E.

7.1.2.1 Outline of creating the DNS forwarding file

This subsection describes how the DNS forwarding file is generated. The following
steps have been performed:

• Get the next serial. The serial identifies uniquely the dns file. Its value should be
the same for the two set of files (forwarding and reversing as presented in Chapter
2 section 2.2.2.9). The serial is obtained by concatenating the current date
(year/month/day) and a number. This number starts with 0 and is incremented
whenever the DNS set of files has been re generated during a same day. In the
example shown below the serial is equal to 200607130. 2006 is the year, 07 is the
month, 13 is the day. Then the last digit is 0 (it is the number which means that it
has been created only once and it was on July, 13th 2006). This number should be
less than P, maximum number to generate the DNS set of files (forward and
reverse files), fixed by the network administrator. The default value (common
value) is 9. If the serial is invalid, the program exits (and does not go through the
reverse part).

The two types of files start with some generic options showed below:
$TTL 86400; minimum TTL (time to live) in seconds as of bind
8.2

Chapter 7 Implementation of the object layer

 176

name of the domain “.” is important name of the DNS
server
ecs.lhcb. IN SOA dns01.ecs.lhcb. root.localhost.
(
#some generic options stored in the XML generic options file
 200607130 ; serial
 3h ; refresh
 3600 ; retry
 4w ; expire
 3600 ; ttl
)

• Use of XML in the SQL queries to get results formatted as followed:

<row><ipname>value</ipname><ipadd>value</ipadd><function>{NS,A,CNAM
E}</function></row>. Using regular expressions, the domain name is taken off
from the ipname.

• Use of XSLT code to convert the XML file and the XML generic option file.

Figure 87. The principles of creating the DNS forwarding file. @ stands for address.

Figure 87 describes the previous steps performed to create the DNS forwarding file.

7.1.2.2 Outline of creating the DNS reversing file

This subsection describes how the DNS reversing file is generated.

Chapter 7 Implementation of the object layer

 177

Figure 88. Implementation guidelines of the creating the dns reversing file. @ stands for address.

Figure 88 presents the implementation guidelines of creating the dns reversing file.

• Get the value of the serial parameter. It is equal to the one in the dns forwarding
file and it is passed as an input parameter.

• Get the list of the IP addresses and IP names of all the equipment part of the
controls network with their subnet ID, using XML embedded in SQL. Store the
results in an array.

• For each different subnetID, get the list of IP addresses and IP names of all the
DNS servers (even if they are not in the given subnet) and format it for the subnet
ID, like:
<row><ipadd>05.100.60.137.</ipadd>
<ipname>DAQ_CTRLPC_60_01.ecs.lhcb.</ipname>
<function>NS</function> </row>

The IP addresses should be reverted. For instance, if the IP address is
123.23.56.45, it becomes 45.56.23.123. A dot should be put at the end to prevent
from appending the subnetID at the end of IP address.

For the authoritative DNS server or also master DNS server (static variable in the
script), it is formatted as follows:
<row><ipadd>137.56.in-addr.arpa.</ipadd>
<ipname>DAQ_CTRLPC_10_01.ecs.lhcb.</ipname><function>NS</function
></row>

In the previous example, 137.56.0.0 is the subnet ID. The “0” is taken off and
replaced by “in-add.arpa”. Between <ipname> and </ipname>, there is the full
name of the master DNS with the zone name (ecs.lhcb). The dot at the end is
essential. If it is omitted, the zone name is appended to the name.

Add all the IP addresses and IP names which are in the given subnetID.

Using XSLT and the xml generic options (same as the previous one), convert the
xml file into a reverse dns file for the given subnet ID.

The last step is iterated for all the subnet IDs. In the case of LHCb controls network,
there are 4 subnets.

Chapter 7 Implementation of the object layer

 178

7.1.2.3 Autonomics setup

When new PCs are added, they will obtain IP addresses, IP names and eventually IP
aliases. The Perl script “dns_generate.pl” must be rerun to add these new entries (IP
address, IP name) in the set of dns files. The same problem occurs when new network
equipment are no longer used. However there is also the dhcp config file which needs
to be updated too. So the Figure 89 suggests an autonomics setup which updates both
the dhcp config file and the dns files further to a change in the DAQ network using
PVSS. The user modifies the DAQ network setup using PVSS. Then automatically,
the DHCP and the DNS servers are reconfigured according to the new setup.

Figure 89. Autonomics setup for the configuration of the DNS and DHCP servers further to a
change in the DAQ network setup.

7.2 CIC_DB_lib, a C-library to query the CIC DB

7.2.1 Implementation guidelines

7.2.1.1 The CIC_DB_lib API

The purpose of the API is to allow a non DB expert user to interact with the CIC DB
in a safe mode and without any knowledge of the table schema. So the database
aspects are hidden from the applications. It also provides a standard interface to the
CIC DB. To guarantee database integrity, all the functions of the API are based on
DML statements [2], i.e. the non DB-expert user is not allowed to drop a table as a
table can be used by more than one application in the LHCb experiment.

To ensure that the library will provide all the information required by the different
users of the CIC DB, the first step was to design the API.

The API is split into four parts (see Appendix F for the C interface):

1. functions to query the content of the CIC DB (based on the SELECT
statement);

Chapter 7 Implementation of the object layer

 179

2. functions to populate the CIC DB(based on the INSERT statement);

3. functions to update information stored in the CIC DB (based on the UPDATE
statement);

4. functions to delete information stored in the CIC DB (based on the DELETE
statement);

The API has been built using the use cases defined in Chapter 4 section 4.3. Then it
has been improved and completed through discussions with the users of the CIC DB.
As agreed within the LHCb collaboration, anybody should be able to have access to
and to use any functions. There are no users’ privileges. All the SQL statements are
hidden as the user is a non DB expert.

7.2.1.2 Use of OCI

CIC_DB_lib is based on OCI (Oracle Call Interface) [3] to access the CIC DB and on
C as the programming language. The main advantage of the OCI interface is that it
provides a lot of functions to interact with a database. It is faster than other interfaces
(e.g. OCCI) [4] as these are built on top of OCI. It is more stable. It is recommended
by Oracle for access to the database. So any type of statement can be done using OCI.
However it is a quite complex interface. An example of how to OCI is used is shown
in Appendix G.

7.2.1.3 Output format of a SELECT query

The return value of functions based on SELECT statements is formatted as follows
(the LHCb Online group has agreed with this format).

• The result of the SELECT is known to be one single row, then the return value is
formatted as follows: |column_name: column_value (column_type) | …|, where |
is a delimiter. It includes all the functions which return a row of a table given the
primary key (e.g. deviceid) or another candidate key (devicename). For example,
GetFunctionalDeviceTypeRow returns the row of a given devicetype.
The main advantage of this format is that the signature of this type of functions is
the same after adding or dropping one column in the table.

• The result of the SELECT returns a group of rows. The return value is either an
array of int which correspond to the primary key of the table such as
GetPortIDPerDevID which returns all the portids of a given deviceid. Or it
can be a list of elements formatted as follows. Each row of the list is separated by
‘\0’ so that the mapping into vector of strings is easier (for PVSS and Python).

7.2.1.4 Use of a memory cache for INSERT and UPDATE

For INSERT and UPDATE statements, a cache has been implemented to allow users
to insert and update many rows in one go (bulk collect feature). It is well known that
it is faster to insert multiple rows in one go than one row at the time.

To do so, a cache (using buffers) has been implemented to store all the rows which
need to be inserted or updated. The user has to set the parameter last_rows (input
parameter in the insert and updates functions) to 1 to indicate that it is the last row
which will be inserted or updated. So as long as this parameter is equal to 0, nothing

Chapter 7 Implementation of the object layer

 180

will be inserted nor updated in the CIC DB. When this parameter is set to 1, all the
rows are stored using OCIBindArrayOfStruct and sent to the CIC DB.

When inserting, deleting or updating many rows, it is advisable to commit not too
often but not after too many rows either. In the literature, a commit is advised to be
performed after very 10 000 rows. This value depends on the size of the rollback
segment, a parameter set by the DBA. The more rows are updated without making a
commit, the more space Oracle will need to save the content in case you rollback. On
the opposite, if a commit is done frequently, it negatively affects the performance. A
commit implies a lot of work such as synchronizing all the caches of all the current
sessions. To make sure that a commit will not be performed after 20,000 rows or
more, inserts or updates in the CIC DB are forced if the cache contains 10,000 rows,
even if it is not the last row. So every 10,000 rows the cache is reinitialized. The
database currently used is maintained by the Central Database Support. They advised
me to commit every 10,000 rows.

This value is set using #define MAX_ROWS 10,000. It is included in a header
file “db_param.h”, where all global variables related to the database are defined. So it
is easy to update if there is any change in the rollback segment size.

7.2.1.5 Querying paths between 2 devices

The API of CIC_DB_lib includes functions which enable users to get detailed paths
between two devices or a device and a device type which are part of a same
subsystem.

The first idea was to compute these paths using PL/SQL. However generating a
destination table containing the detailed paths between 2 devices (which both have
one subsystem in common) using PL/SQL is not the best method for two reasons:

• Getting the paths between 2 devices is dynamic, in the sense that the name of
two devices is not known in advance. Besides there are around 10 subsystem
groups who can want to query paths between different types of devices. The
DESTINATION_TABLE will contain too many rows and will be not easy to
manage if we generate a destination table for each query “Get the paths
between device A and device B”. Moreover nothing can be predefined
contrary to generating the destination tables of the DCHP servers or the TFC
switch.

• There is a performance issue. Getting paths between devices will be used to
test links and to configure parameter values. Tests have been done between an
implementation in C and PL/SQL code. C code was much faster as it has
better memory and loop management.

Therefore algorithms to get detailed paths between device A and device B or device A
and a device type have been implemented in C.

The main steps are:

1. Load all the links which are part of the same subsystems as device A. It is
sufficient to load the links which are part of the same subsystems as device A
as device A and device B are in the same subsystem. In other words, a part of
the CONNECTIVITY table is loaded in cache.

2. Load the microscopic links of all the devices which are in the same subsystem
as device A. So a part of the MICROSCOPIC_CONNECTIVITY is loaded
in cache. Depending on the level of the granularity this table can be empty.

Chapter 7 Implementation of the object layer

 181

3. Find all the paths starting from device A and ending at device B. A path
cannot contain the same device twice and the pattern intermediate node-host
node-intermediate node is rejected. It is the same as developed in PL/SQL
package. Also there is a check that the combination (input, output) is valid. If
data arriving at a given input can go out from the given output, then the path is
kept, otherwise, it is rejected. It is done using a C function which uses the
MICROSCOPIC_CONNECTIVITY table loaded in memory to verify if the
given (input, output) can communicate. As a remark, if the
MICROSCOPIC_CONNECTIVITY table is empty, the function is not
called as the given (input, output) pairs are always valid. The main advantage
of this check is it is independent of the board connectivity. The same
algorithm to get the macroscopic paths is applied to check that the given
combination (input, output) is valid.

4. Format and return the detailed paths if there are any.

5. If not, we reverse the query. It means applying the previous steps by inverting
device A and device B so that the results are independent of the direction of
the query. Indeed we do not assume that the user gives the device A and
device B in the right order. For instance, if a given dataflow is from
VELO_hybrid_09 to VELO_TELL1_12. The user may ask get the paths
between VELO_TELL1_12 and VELO_hybrid_09. The step 3 will find no
paths. The links stored in the CONNECTIVITY table need to be reverted to
find the correct paths.

If whatever the query is, the subsystems are fixed, then there is no need to redo step 1.
However, if new links have been added, a reload can be requested.

The query “get all paths through a device” is based on the same steps.

In any case, there is a timeout to avoid long computation of paths. It can happen if the
user sets all the links to bidirectional and if there are a lot of devices with more than
100 ports.

7.2.1.6 Error Handling

There is error handling for the following errors:

• Unsuccessful malloc if a memory allocation fails;

• NO_ROWS_SELECTED, if the result of the SELECT statement is empty;

• BUFFER_TOO_SMALL, if the size of the buffer to which the result should be
copied;

• COULD NOT UPDATE ALL THE ROWS with the name of the function which
fails. This is the case when some of the rows have not been updated during a bulk
update. It is the case if the where one condition is not satisfied such as mistypes.
For instance,

Update functional_devices set nodeused=1 where devicename =
’VELO_TLL1_23’. If VELO_TLL1_23 does not exist, this update will not work.

• COULD NOT INSERT ALL THE ROWS with the name of the function which
fails. It means that some of the rows have not been inserted. This is the case when
there is also a mistype. The device RICH1_TELL1_10 is of type RICH1_TELL1.
When the user has inserted this device, he has attributed RICH1_TELL as device
type, which does not exist, instead of RICH1_TELL1.

Chapter 7 Implementation of the object layer

 182

The Oracle errors explaining why a statement failed, such as a violation of a
constraint or parent key not found are returned using the OCIError function. The
complete Oracle error is returned in ErrMess, present in all functions of CIC_DB_lib.
Besides the error which causes the failure, the name of function is also given.

7.2.1.7 Building CIC_DB_lib

The CIC_DB_lib contains 157 functions and 58544 lines. It consists of 4 header files
and 27 source files. The library has been compiled with MCV.Net v7.1 on Windows
and gcc version 3.2.3 20030502 (Red Hat Linux 3.2.3-56) on Linux.

All the functions are documented and available on the LHCb Online web site [5].

7.2.2 Features of CIC_DB_lib

The following features have been checked to comply with building autonomic tools.

7.2.2.1 Memory management

One of the common problems when implementing a library is to know which
application should allocate the memory. To avoid any problem related to memory
allocation, the application which uses CIC_DB_lib should allocate the memory.
CIC_DB_lib will not allocate memory. However the application or the user will have
to provide size of allocated buffers. For each function returning a list of devices, the
user needs to specify the allocated size of the buffer in which the result should be put.
If the size is too small, I put the required size in the variable which indicates the
buffer size. If it is sufficient, I also put the real size needed here so that the application
does not have to loop uselessly to extract the elements of int* or of char* as described
in 7.2.1.4.

Example of use:
Int GetHistoryOfFunctionalDevice(char* functional_devicename,char*
functionaldevice_history, int & len_history, char* min_date, char* max_date,
char* ErrMess)

This function returns the history of a given device in
functionaldevice_history. The application which calls this function has to
put the allocated length of this parameter in len_history.

If the returned result can not be copied in functionaldevice_history, the
size needed is put in len_history and I returned in ErrMess,
BUFFER_TOO_SMALL. If the allocated size is enough, I copy the result in
functionaldevice_history and specify the length in len_history.

7.2.2.2 Security

There was no security issue for the DB access as the CIC DB will be installed in a
local network that is not accessible from the outside world. So there was no need for
data encryption for instance. The only thing is that the user needs to connect the CIC
DB by providing DB_name, login and password.

Chapter 7 Implementation of the object layer

 183

7.2.2.3 Consistency

7.2.2.3.1 Insert, update and delete information by block

Insert, delete and update functions have been implemented to ensure the consistency
of the data in the CIC DB. The first thing is the block (a group of elements which
needs to be updated or inserted or deleted within the same transaction) insertion (or
update or deletion). It means that groups of data are inserted (or deleted or updated if
required) together, using the same function. All these queries are part of the same
transaction. Using this method, it avoids the user from calling several functions and it
also prevents from forgetting to insert or update data.

Consider the following scenario. A user wants to insert a functional device. According
to the table schema, inserting a functional device implies an insert in the
HARDWARE_DEVICES, in the FUNCTIONAL_DEVICES and in the
DEVICE_HISTORY tables. To allow efficient data consistency, the 3 inserts are
done within the same SQL query. It consists of three consecutive SQL inserts. The
main advantage is that if one of the inserts fails, the whole inserts fails. This is
because of the use of foreign key constraints. Indeed, the first statement inserts into
HARDWARE_DEVICES. Then the second inserts in FUNCTIONAL_DEVICES
only if the first insert is successful. Finally the third ones inserts in
DEVICE_HISTORY which can be done only if both previous inserts are successful.

The input parameters of InsertFunctionalDevices include all the table columns of
HARDWARE_DEVICES and FUNCTIONAL_DEVICES.
Inserting by block is also used for port. If it is a DAQ device (i.e. it has an IP
address), information will to be inserted in FUNCTIONAL_PORT_PROPERTIES,
HARDWARE_PORT_PROPERTIES and IPINFO tables within the same SQL
block.

The same concept has been applied for the UPDATE.

In the API, there are functions to delete links, ports, devices and device types. The
user cannot delete a device if he has not deleted the ports of the device before.

When an insert, an update or delete affect the TFC or DAQ connectivity, a PL/SQL
function part of routingtable_pck package updates the content of
DESTINATIONTABLE, ROUTINGTABLE and PATH_LINES tables.

7.2.2.3.2 Use of status diagrams for inventory

Inventory information requires a lot of checking to avoid inconsistency. To update the
status of a device, there are three functions (and three for updating board component
status):
ReplaceFunctionalDevice(char*devicename,char*
new_device_status,char*user_comments,char*
status_datechange,char*serialnb_replacement,char*replace_date, char*
ErrMess)

which allows the user to replace a functional device IN_USE by another hardware
device (serialnb_replacement). The status of the hardware device which has been
replaced must be specified (new_device_status). If the user sets serialnb_replacement
to “none”, it means that the functional_device has status “NONE”.

Chapter 7 Implementation of the object layer

 184

SetToTestUseStatus(char* devicename, char* user_comments, char*
status_datechange, char*serialnb_replacement, char* testboard_name,
char*replace_date, char* ErrMess)

which allows replacing a functional device by another hardware device. The status of
the hardware which was occupying the functional device is set to “TEST” and
occupies a test board (testboard_name).

With these two functions any hardware device with status “IN_USE” can go to
another status (TEST, EXT_TEST, DESTROYED or IN_REPAIR, SPARE).
UpdateHWDeviceStatus(char*devicename,char*new_device_status,char*new_
location,char*user_comments,char*
status_datechange,char*functional_devicename,char*ErrMess)

allows the user to set the status of a hardware device which does not have the status
“IN_USE” to another status {EXT_TEST, DESTROYED or IN_REPAIR, SPARE,
IN_USE}.

Using the following diagrams (see Figure 90, Figure 91, Figure 92, Figure 93, Figure
94) all the required checks can be made when updating the status of a device.
Everything written in orange means it is an input parameter (provided by the user).

Figure 90. Replacing a hardware device.

Chapter 7 Implementation of the object layer

 185

Figure 91. Setting the status of a hardware device to “IN_USE”, with no replacement.

Figure 92. Changing the status of a hardware device from “IN_USE” to “TEST”, with
replacement.

Chapter 7 Implementation of the object layer

 186

Figure 93. Changing the status of a hardware device from “IN_USE” to “TEST”, with no
replacement.

Figure 94. Updating the status of a hardware device to “IN_USE”.

Each status change is inserted into the DEVICE_HISTORY table by calling
functions from the CIC_DB_lib.

7.2.2.4 Concurrency

Functions including insert or update statements have been tested in multi-user
environment. In other words, different processes have executed the same function

Chapter 7 Implementation of the object layer

 187

with different input parameters. This check was made to ensure that there was no
blockage.

The tests have been performed on Windows using a C application which is based on
the CreateProcess function. This function allows executing a function with specific
command lines.

In fact, the different insert or update statements which correspond to a transaction
were executed sequentially. During the tests, the “commit” or “rollback” statements
were essential as it they prevent a SQL statement from blocking.

Through these tests, I could notice a problem when an Oracle sequence is created
dynamically (in the routingtable_pck) and then it is rewound to 1 for the next call.
The problem was that one of the functions was using the sequence and the other one
wanted to rewind. Then the two functions raise an Oracle error. The problem is that
Oracle sequences are the same and common to all the sessions unlike temporary
tables which are bound to a session.

7.2.2.5 Autonomics

CIC_DB_lib has been implemented so that the tools which use it can reduce the
human intervention and be self-adaptive in case of changes in the connectivity or the
inventory.

This has been achieved by:

• understanding the system (the architecture, the dataflow, what is allowed what is
not);

• anticipating the different failures or changes which can happen (devices or links
out of order, swapping two devices, etc.);

• providing the maximum of flexibility (possibility to test a part of a system by
disabling/enabling some links or some devices, etc.).

7.2.3 Issues

The difficulties which occur during the implementation of the library were the
following:

• Define a complete API using the use cases. As the subsystems were built not at
the same time, not all the use cases have been given at the same time. So the
functions also have not been implemented at the same time.

• Best way to send back the results of a retrieval query, especially regarding paths
so that the user or the application can easily extract and use the information
required.

7.3 Bindings

7.3.1 Implementation of the PVSS CIC_DB_lib

A PVSS extension of the CIC_DB_lib has been implemented to permit interactions
with the CIC DB from PVSS.

It has been implemented using GEH [6]. For each function of the CIC_DB_lib, a
wrapper has been written based on TextVar and IntegarVar C++ classes. There is one

Chapter 7 Implementation of the object layer

 188

source file which contains all the wrappers. It has 10770 lines. The PVSS interface
has been included in Appendix H.

The code below shows an example of the PVSS wrapper for the function
DBConnexion. It is a function used to connect to the CIC DB.
DBConnexion(char* dbname,char* login,char* passwd,char* ErrorMess) :

/**
************/
/**
 * Connect to the database taking 3 arguments and returning an
integer value.
 * @param server : name of the database.
 * @param usr : user login.
 * @param pwd : user password.
 * @param errMess : return the ErrorMessage in case of
failure (otherwise NO_ERRORS in + fct name)
 * @return 0 if the disconnection is successful
 */
/***/

IntegerVar* PVSSDBConnexion(TextVar* server,TextVar* usr,TextVar*
pwd,TextVar* errMess)
{
static IntegerVar c=0;
std::string dbname = server->getValue();
std::string login = usr->getValue();
std::string passwd = pwd->getValue();
int len_buffer=600;
char* ErrorMess=new char[len_buffer];

c=DBConnexion((char*)dbname.c_str(),(char*) login.c_str(),(char*)
passwd.c_str(),ErrorMess);
errMess->setValue(ErrorMess);
delete [] ErrorMess;
return &c;
}

The extension exists both on Linux and Windows.

However I have encountered a compiler version problem. On Windows, Microsoft
Visual 6.0 has to be used to compile it as the GEH has been built using this version.

Then on Linux, I have to use the compiler gcc version 2.96 20000731 (Red Hat Linux
7.3 2.96-113), an old version as the GEH has been compiled with this version. It was
also not easy to get such a machine with this compiler version.

All the functions are documented and available on the LHCb Online web site [5].

7.3.2 Implementation of the Python CIC_DB_lib

There is also a Python binding. It is used by CDBVis, which will be explained in the
next chapter. To interface it in Python, I used Boost [7]. This is an open source project
which allows any bindings from C++ to Python. It is very efficient especially to
manage and convert C pointers into Python objects. Boost has been integrated in
Gaudi which is an LHCb Computing framework. The main advantage to use Boost
integrated in Gaudi is the maintenance of the module and the integration in the LHCb
environment.

Here also I had to write a wrapper for all the functions of the CIC_DB_lib.

Chapter 7 Implementation of the object layer

 189

The result is a module (lib) cicDBpython which can be used in Linux and Windows.
In a python script, the library can be used by doing “import (lib)cicDBpython”.

There was a need to implement two classes CICDB and CICDBEXCEPTION, to
provide convenient error handling.

The attributes of CICDB are the connection parameters i.e. DB name, login and
password. The methods of CICDB correspond to the functions implemented in the
CIC_DB_lib. The CICDB class is presented in Appendix I.

The code below shows an example of the wrapper for the

DBConnexion(char* dbname,char* login,char* passwd,char* ErrorMess). It
is the function used to connect to the CIC DB.
int CICDB::PyDBConnexion()
{
int c=0;
int len_buffer=1000;
char* ErrorMess=new char[len_buffer];
string ErrorMess_copy;

c=DBConnexion((char*)_dbname.c_str(),(char*)_login.c_str(),(char*)_pa
sswd.c_str(),ErrorMess);
 if(c!=0)
 {
 ErrorMess_copy=ErrorMess;
 delete [] ErrorMess;
 throw CONFDBEXCEPTION(ErrorMess_copy);
 }

 delete [] ErrorMess;
return c;
}

Here I had two main problems:

• Handling of the in-out parameters13 as it does not exist in Python. Some of the
results have been concatenated. For instance, the C function
int GetAllPathsPerDevice (char * systemnameList, char * devname, int
& len_array, int * lkid_list, int * pathid_list, int * link_pos_list,

int reload_connectivity, int delete_connectivity, char * ErrMessage)

becomes in Python,
vector< string > CICDB::PyGetAllPathsPerDevice (string systemname,

string devicename, int reload_connectivity, int delete_connectivity).

The return value of this function is a vector of strings. Each row of this vector
corresponds to the concatenation of pathid_list| link_pos_list|lkid_list|.

• Compiler and Python version. It requires MCVNet v7.1 on Windows. It did not
work with the previous version of Microsoft Visual because of Boost. Moreover
the module cicDBpython can work only with Python 2.3.4 because of the Boost
module.

Finally, all the functions are documented and available on the LHCb Online web site
[5].

13 By in-out parameters, we mean an input parameter whose value is changed by the function and is
returned. It is both input and output parameters.

Chapter 7 Implementation of the object layer

 190

7.4 A PVSS library for recipes

The CERN PVSS Support has implemented a PVSS library to load and save recipes
into/from PVSS. The documentation about the functions is included in the framework
[8].

This library provides functions to load and save a recipe including versioning
mechanism. It also includes functions to get the list of devices in a hierarchy, to get
the list of available recipes (a device can be specified)

7.5 Conclusion

In this chapter, the object layer has been described. Two Perl scripts
(“dhcpCfg_generate.pl” and “dns_generate.pl”) have been used to generate the config
file for both the DHCP and DNS servers. The “dhcpCfg_generate.pl” script which
creates the DHCP config file embeds PL/SQL function from the routingtable_pck to
build the destination table.

CIC_DB_lib with its two bindings (PVSS and Python) enables non-DB expert to
query, update and insert information about connectivity and inventory. Compiler
version problems were the main issue when building these two extensions.

CIC_DB_lib has been built to permit to implement tools (which use it) to be adaptive
and smart, as any autonomic tools by reducing human intervention. To get and save
information about recipes, the CERN PVSS Support has implemented a PVSS library
which can be used in PVSS panels.

Implementing autonomics tools is made possible by using the libraries (CIC_DB_lib
ant its two bindings), PVSS and its frameworks. Thus it will permit to develop a
single-click control system. However there is still the need to start and stop the
experiment, which can be done only by a human being.

The next chapter explains how these libraries have been integrated in the GUI layer.

Chapter 7 Implementation of the object layer

 191

References

[1] L.Abadie, Generating the DHCP config file using confDB, LHCb Internal Note,
June 2006. LHCb-2006-038.

[2] ORACLE, Oracle® Database, SQL Reference, 10g Release 2, December 2005.
B14200-02. 1428 p.

[3] ORACLE, Oracle Call Interface, Programmer’s Guide, 10g release 2. ORACLE
PRESS, OSBORNE. B14250-02, November, 2005. 1258 p.

[4] ORACLE. OCCI (Oracle C++ Call Interface) Programmer’s Guide, 10g Release 2
(10.2). ORACLE PRESS, OSBORNE, December 2005, B14294-02, 474 p.

[5] CIC_DB_lib Documentation and its two extensions,
http://lhcb-online.web.cern.ch/lhcb-online/configurationdb/download_libraries.htm

[6] GEH, Generic External Handler,
http://itcobe.web.cern.ch/itcobe/Projects/Framework/Download/Components/Generic
ExternalHandler/welcome.html

[7] Boost Python, http://www.boost.org/libs/python/doc/

[8] PVSS library for recipes,
http://itcobe.web.cern.ch/itcobe/Projects/Framework/Download/welcome.html

Chapter 8 Structure of the GUI layer

 192

Chapter 8 Structure of the GUI layer

This chapter describes the different GUIs which have been built on top of the object
layer. First we explain the features and the implementation principles of CDBVis, a
graphical editor to navigate through the CIC DB. Secondly, we explain how the XML
config files generated by the two Perl scripts are converted using XSLT to config files
which are accepted by the DHCP and DNS servers. Finally we present some PVSS
panels which have been implemented to configure modules and handle partitioning.
We also show that both information about configuration parameters and connectivity
are combined by the ECS so that a single-click system can be built.

8.1 CDBVis, a graphical editor

8.1.1 Features

CDBVis [1] enables a non-DB expert user to view and insert connectivity
information.

Its features are the following ones:

• Creation of device types, devices, ports and link types and links per subsystem,
mass insertion has been developed;

• Update device types, devices, ports and link types and links per subsystem;

• Implementation of a cache which saves everything created by the user. The cache
is emptied when the user confirms that data should be sent to the CIC DB;

• View the list of device types, devices, ports per subsystem;

• View the neighborhood connectivity of a device;

• View all the paths which go through a selected device;

• Common features related to graphical tools such as zooming, structure
duplication, status bar progress, undo and redo etc.

This tool is very useful to check that the connectivity of subsystem was correctly
inserted. Figure 95 to Figure 101 show snapshots of CDBvis:

• Figure 95 shows the first panel when the tool is started. It is composed of 3 parts,
a Selection Window which displays a tree with 4 levels (subsystems, device
types, devices and ports), a Visual Window which displays the connectivity
between devices and an Information Window which gives some information when
an element of the tree is selected.

• Figure 96 shows on the left, an example (not complete) of MUON hierarchy
which is displayed in the Selection Window. It contains two device types FEE
and M5R4. There are 5 devices of type FEE. (FEE_MUON_1 is one device). On
the right, there is the Information Window which displays information about
FEE_MUON_1. The attributes correspond to the attributes of the DEVICE entity
as explained in Chapter 5.

• Figure 97 shows how objects can be created. On the top right, there is a panel to
create device types. The user has to fill in the different attributes of the entity
DEVICE_TYPE such as the name, the number of input and output ports, a
description, etc. On the top left, there is a panel to create devices. Creating

Chapter 8 Structure of the GUI layer

 193

multiples devices in one go is possible but updating afterwards the serial number.
The user has to provide the name, the device type, the serial number, the
responsible, etc. When the user creates a device, it covers both the functional
device and the hardware device. It avoids doing two different insertions. On the
bottom left, there is a panel which allows creating a port. A device cannot be
inserted if the user does not save any ports. Indeed a device without ports does not
make sense as it means that it cannot be connected! Here also the parameters to
fill in correspond to the attributes of the entities PORT_PROPERTIES and
HWPORT_PROPERTIES and IPINFO. By doing such information grouping, we
avoid having many panels and steps for the users. Also it is easier to detect errors.
For instance, let us assume that the user first had to create 10 hardware ports.
Then it has to create the 10 associated functional ports. Assume that one of the
functional ports had not been created properly or vice versa; the hardware port
associated should be removed too. Performing a rollback will delete the ten rows
for both hardware and functional ports provided that there were no commit
between the two distinct insertions. So one has to reinsert the 10 hardware ports
and the 10 functional ports. It is not very convenient for the user. In our case, the
insert has been implementing in such way that either both or none of the ports
(hardware, functional) are inserted. Thus one row out of 10 could not be inserted
properly, the user will just have to insert the row which fails (CDBVis gives the
possibility to get which row to be inserted has failed). On the bottom right, there
are two panels, one for creating the link types (for entity LINK_TYPES) and
another one to create the link between devices (for entity CONNECTIVITY).

Figure 95. First panel of the tool.

Chapter 8 Structure of the GUI layer

 194

Figure 96. Browsing information via a hierarchy (left). Information about the device (right).

• Figure 98 shows the input and output connectivity of the TFC switch, called

ThorV1_00. It is because we are in neighborhood view. With this mode, when the
user clicks on a device in the Selection Window, the devices connected on its
input and on its output are displayed. On its input it is connected to 16 readout
supervisors (named OdinVX_YY, where X and Y represent numbers). On its
output, it is connected to 15 TTCtx (from TTCtx_00 to TTCtx_14). By clicking
on one of the link, information about this link is displayed on the Information
Window.

• Figure 99 shows the input and output connectivity of the distribution switch in the
DAQ system, called DAQ_SWITCH_14. On its input it is connected to the Force
Ten, called DAQ_ROUTER_01 (via 10 links). On its output, it is connected to 40
farm nodes and to another distribution switch (DAQ_SWITCH_60) for the
storage.

• Figure 100 and Figure 101 show two examples in the Path mode view. With this
mode, when the user clicks on a device in the Selection Window, all the paths
which go through this device are returned as pop up panel which lists all the paths
found. Then the user selects one of the paths and this latter is displayed.

Chapter 8 Structure of the GUI layer

 195

Figure 97. Creating objects. On the top left, a panel to create device types and on the top right, a
panel to create devices. On the bottom left, a panel to create ports and on the bottom right a
panel to create link types and a panel to create links.

Chapter 8 Structure of the GUI layer

 196

Figure 98. Neighbored connectivity for the TFC switch (ThorV1_00).

Chapter 8 Structure of the GUI layer

 197

Figure 99. Neighbored connectivity for the switch DAQ_SWITCH_14.

Chapter 8 Structure of the GUI layer

 198

Figure 100. Path mode view: get paths through DAQ_FLOW_00.

Chapter 8 Structure of the GUI layer

 199

Figure 101. A Path going through HCAL_DAC_06.

8.1.2 Implementation

CDBVis is a graphical tool written in Python. Python has been chosen because it is
commonly used in the LHCb software environment. It is an easy and convenient
language to build a prototype. Also as Python is portable, the tool works both on
Windows and Linux.

The graphical tool has been developed by a collaborative effort between many people,
including myself. It uses two python modules:

• wxPython , a widget library to build graphical panels;

• (lib) cicDBpython (the Python binding of the CIC_DB_lib, see Chapter 7 section
7.3.2) to access and interact with the CIC DB (connection/disconnection,
queries).

It has been programmed using objects and methods as shown in Figure 102 [1]. The
classes correspond to the tables built for the connectivity and inventory/history
schema.

Chapter 8 Structure of the GUI layer

 200

Figure 102. The class model above shows the relations between the classes in the different
modules (shown as packages), and the member variables that are responsible for the
association/reference between the classes are shown.

8.1.3 Issues

CDBVis permits the user to navigate through the connectivity of a subsystem stored
in the CIC DB. The main problem we face when implementing CDBVis was to
display the connectivity. There are different types of connectivity with different
devices. For instance, the Force Ten router with its thousands of ports has to be
readjusted compared to the other smaller switches.

Getting all the paths is quite time-consuming. It can go from a few seconds to a few
minutes depending on the total number of paths found. For instance, Figure 101
shows paths for the device HCAL_DAC_06. It takes two minutes to find the 13952
paths and getting information about all the different links in the paths and create all
the Python objects needed to display them. 1 minute and half is needed to retrieve the
paths and half a minute to create the object. Creating all the Python objects can take a
lot of time especially for the DAQ. It takes around 1 minute to get the 5384 paths
going through the DAQ_SWITCH_14 and around 4 minutes to create the objects. The
main problem is to create the object device DAQ_ROUTER_1 and its 1200 ports!

Chapter 8 Structure of the GUI layer

 201

Each port is an object. Presenting the paths found to the user especially when there are
thousands of them was not obvious. Currently, the user has to select one among many
paths (from ten to thousands as mentioned previously). Once a path selected, there is a
need to draw the path but it takes one or two seconds as all the objects have been
created.

CDBVis works for most features but is still under work. New features should be
added such as the possibility to view the microscopic connectivity of a device and
also to insert it.

8.2 The DHCP and DNS config files

8.2.1 XML output

The two Perl scripts “dns_generate.pl” and ““dhcpCfg_generate.pl” print the result of
the database queries on XML files. The conversion of the XML files into DHCP and
DNS config files is ensured by XSLT. The main advantage is that the XML files are
independent of the DHCP and DNS specific syntax.

The tags used in the XML files are listed in Table 17.

XML Tag Used in DNS Used in DHCP
<page> Yes Yes
<option_list> Yes Yes
<SOA> Yes No
<expire> Yes No
<retry> Yes No
<refresh> Yes No
<ttl> Yes No
<TTL> Yes No
<option> No Yes
<ethernet_add> No Yes
<row> Yes No
<ipadd> Yes Yes
<ipname> Yes Yes
<function> Yes No
<filename> No Yes
<subnet> No Yes
<subnetID> No Yes
<subnet_mask> No Yes
<rowset> Yes Yes

Table 17. List of XML tags used in the DHCP and DNS config files.

The code below shows an example of the XML output for the DHCP config file:
<?xml version = '1.0'?>
<page>
<option_list><option>ddns-update-style ad-hoc
</option></option_list>
< option_list ><option>deny unknown-clients
</option></option_list>
< option_list ><option>use-host-decl-names on
</option></option_list>

Chapter 8 Structure of the GUI layer

 202

< option_list ><option>always-reply-rfc1048 true
</option></option_list>
<option_list><option>domain-name-servers 137.138.16.5
</option></option_list>
<options><option>option routers 137.138.1.1 </option></options>
<subnet>
<subnetID> 137.30.102.0 </subnetID>
<subnet_mask> 255.255.255.0 </subnet_mask>
<rowset>
<row><ethernet_add>00:00:DD:19:52:15</ethernet_add><ip_add>137.30.102
.103</ip_add><ipname>DAQ_NODE_02_03</ipname><filename>farm_nodes_imag
es.nbi</filename></row>
<row><ethernet_add>00:00:DD:19:52:16</ethernet_add><ip_add>137.30.102
.104</ip_add><ipname>DAQ_NODE_02_04</ipname><filename>farm_nodes_imag
es.nbi</filename></row>
<row><ethernet_add>00:00:DD:19:52:17</ethernet_add><ip_add>137.30.102
.105</ip_add><ipname>DAQ_NODE_02_05</ipname><filename>farm_nodes_imag
es.nbi</filename></row>.

The code below shows an extract of the DNS reverse XML file:
<?xml version = '1.0'?>
<page>
<option_list>
<SOA>137.26.in-addr.arpa. IN SOA DAQ_CTRLPC_10_01.ecs.lhcb.
root.localhost.</SOA>
<serial>200609051</serial>
<TTL>86400</TTL>
<refresh>3h</refresh>
<retry>3600</retry>
<expire>4w</expire>
<ttl>3600</ttl>
</option_list>
<rowset>
<row><ipadd>137.26.in-
addr.arpa.</ipadd><ipname>DAQ_CTRLPC_10_01.ecs.lhcb.</ipname><functio
n>NS</function></row>
<row><ipadd>05.100.60.137.</ipadd><ipname>DAQ_CTRLPC_60_01.ecs.lhcb.<
/ipname><function>NS</function></row>.

8.2.2 Conversion using XSLT

Using XML::XSLT Perl library, the XML files are parsed using an XSLT sheet.
There is one for the DHCP and two for the DNS (one for the forwarding and one for
the reversing).

The tags listed in Table 17 are used as block delimiters and some of them are renamed
as mentioned in Table 18.

Chapter 8 Structure of the GUI layer

 203

XML Tag XSLT use
<page> Delimiter
<option_list> Delimiter
<SOA> Delimiter
<expire> ;expire
<retry> ;retry
<refresh> ;refresh
<ttl> ;ttl
<TTL> $TTL
<option> Delimiter
<ethernet_add> hardware ethernet
<row> Delimiter
<ipadd> fixed-address
<ipname> Host
<function> Delimiter
<filename> Filename
<subnet> Delimiter
<subnetID> Subnet
<subnet_mask> Netmask
<rowset> Delimiter

Table 18. Processing of XML tags in the XSLT stylesheet.

The generated DHCP config file looks like as below:
dns-update-style ad-hoc
; deny unknown-clients
; use-host-decl-names on
; always-reply-rfc1048 true
; domain-name-servers 137.138.16.5
; option routers 137.138.1.1 ; subnet 137.30.102.0 netmask
255.255.255.0 { group {
 host DAQ_NODE_02_03{
 hardware ethernet 00:00:DD:19:52:15;fixed-address 137.30.102.103;
 filename "farm_nodes_images.nbi";}
 host DAQ_NODE_02_04{
 hardware ethernet 00:00:DD:19:52:16;fixed-address 137.30.102.104;
 filename "farm_nodes_images.nbi";}
 host DAQ_NODE_02_05{
 hardware ethernet 00:00:DD:19:52:17;fixed-address 137.30.102.105;
 filename "farm_nodes_images.nbi";}

The forwarding DNS file is like:
$TTL86400
ecs.lhcb. IN SOA DAQ_CTRLPC_10_01.ecs.lhcb. root.localhost. (
200609051;serial
3h;refresh
3600;retry
4w;expire
3600;ttl
)
 ecs.lhcb. IN NS DAQ_CTRLPC_10_01.ecs.lhcb.
 DAQ_CTRLPC_60_01 IN NS 137.60.100.05

The reversing DNS file is like:
$TTL86400

Chapter 8 Structure of the GUI layer

 204

137.60.in-addr.arpa. IN SOA DAQ_CTRLPC_10_01.ecs.lhcb.
root.localhost.(
200609051 ;serial
3h ;refresh
3600 ;retry
4w ;expire
3600 ;ttl
)

 137.60.in-addr.arpa. IN NS
DAQ_CTRLPC_10_01.ecs.lhcb. 05.100.60.137. IN NS
DAQ_CTRLPC_60_01.ecs.lhcb.

8.3 Use of PVSS panels

8.3.1 Handling partitioning

To handle partitioning, the TFC switch must be programmed. It means that we need to
determine to which output port a given subsystem is connected and to which input
port of the TFC switch a given readout supervisor is connected.

The destination table of the TFC switch allows getting the output port given a
subsystem name. Indeed using the destination table, we get all the reachable host
nodes, which correspond to TELL1 boards and consequently we know the subsystem.

The destination table of the TFC switch is created and maintained in the CIC DB.

To program the TFC switch, a local TFC control system has been implemented in
PVSS.

As the destination table is fixed, a PVSS script gets the output port per subsystem
from the CIC DB. The loading is done using PVSSGetPortPerSubsystem, also part
of the CIC_DB_lib.

The signature is as follows:

Int PVSSGetPortPerSubsystem (string dfrom,
 string subsystem_name,

 dyn_string &pfrom_list,
 string & ErrMess)

Example of use:
PVSSGetPortPerSubsystem(“THOR_00”, ”VELO_A”, pfrom_list, errMess);

Then to get the connectivity between readout supervisors and the TFC switch,
PVSSGetLkToDevID is used. This function allows obtaining all the linkids
connected to the input of a given device. This one is used, as the readout supervisors
are directly connected to the TFC switch.

Example of use:
Dyn_int linkid_list;
String lkid_row;
Int devid=PVSSGetDeviceID_devicename(“THOR_00”,errMess);
Linkid_list=PVSSGetLkToDevID(2351,errMess);
For (i=1;i<=dynlen(Linkid_list);i++)
lkid_row=PVSSGetMacroConnectivityRow_lkid(Linkid_list[i])

Connectivity information is stored in a datapoint so that it can be accessed during the
run of the project.

Chapter 8 Structure of the GUI layer

 205

Figure 103 shows the PVSS user interface to program the TFC switch. The first thing
is to select the subsystems part of the partition. Then, after clicking on the FIND
ODIN button, the connectivity between the selected subsystems and the TFC switch
is displayed in Figure 104.

Figure 103. First step: select the subsystems.

The selected subsystems are no longer free as shown in Figure 104. Besides the
connectivity between subsystems and the TFC switch, the first free readout supervisor
is suggested and is connected to the TFC switch.

Figure 104. Result of the connectivity and suggest a free readout supervisor.

Chapter 8 Structure of the GUI layer

 206

If the user is not satisfied with this one, he can select another one and the connectivity
is automatically updated as shown in Figure 105.

Figure 105. Select another readout supervisor, update the connectivity.

8.3.2 Recipes

The PVSS library for recipes has been integrated in LHCb specific components such
as FwHW [2]. This is a PVSS tool which allows controlling hardware equipment with
PVSS.

Once the hardware has been represented with data-points, the tool allows defining
recipes and FSM states. It is also used to configure and monitor the hardware. Figure
106 shows the different parameters that can be configured. It consists of essentially
registers (see address and sub address field), bus (I2C, JTAG, LBUS, etc.) and FPGA
code to download (see Figure 107). Using DIM, the commands Read, Write, Reset
enable the user to interact with the hardware.

Chapter 8 Structure of the GUI layer

 207

Figure 106. A PVSS panel to configure buses of a TELL1 board.

Chapter 8 Structure of the GUI layer

 208

Figure 107. Downloading a FPGA code.

This library has been integrated it in the TFC Local Control Project. Figure 108 is a
PVSS panel which displays monitoring and configurable parameters. The FSM state
of the devices (for example OdinV2_00) is shown in a button next to the name of the
device (RUN_NOT_READY). The initial state of OdinV2_00 is RUN_READY.
From this state, it can go to RUN_RUNNING. If something goes wrong, it goes
automatically to RUN_ERROR. The buttons in grey mean that the device is not part
of the data taking (not active). For instance, there is only OdinV2_00 which is active.
The other parts ECAL, HCAL, …, VELO are inactive. This kind of run is used to test
the readout supervisor OdinV2_00.

Configurable parameters are the ones on the right (which can be ticked, in the
L0_trigger frame). They are related to L0 Trigger properties.

Chapter 8 Structure of the GUI layer

 209

Figure 108. Possible configurable parameters.

Figure 109 shows how a recipe can be saved for OdinV2_00. The current values of
the parameters will be saved in the CIC DB.

Chapter 8 Structure of the GUI layer

 210

Figure 109. Saving a recipe for OdinV2_00.

Figure 110, Figure 111 and Figure 112 show the different steps to load a recipe into a
device. The first thing is to select a recipe and a device name as shown in Figure 110.
Then it loads the recipe content into the data point elements. All the parameters have
been reset (nothing is ticked) as shown in Figure 111. The state of OdinV2_00 is
RUN_CONFIGURING which means the device is being configured. Finally the
parameters are applied to the panel (dots in green) as shown in Figure 112. In our
case, the recipe modifies the value of the parameter “periodic trigger A”.

Chapter 8 Structure of the GUI layer

 211

Figure 110. Loading an existing recipe for OdinV2_00.

Figure 111. Configuring the hardware.

Chapter 8 Structure of the GUI layer

 212

Figure 112. Hardware configured.

So using this panel one can configure the readout supervisor (the real hardware) by
loading recipes from the PVSS cache or the CIC DB. If the user is an expert in the
readout supervisor, he can also save recipes for it. This panel also allows users to
monitor the readout supervisor via different parameters such as Bunch IDs, Trg
commands, etc.

Finally the state of the readout supervisor is given by the FSM.

8.3.3 Combining connectivity and configuration parameters

The two previous subsections o shows how connectivity and device parameters for
configuration need each other. To define the partition there is a need to get
information about the connectivity (referring to Figure 103 and Figure 104), and to set
the registers in the partition the information about configuration parameters (referring
to Figure 110, Figure 111).

Mixing different types of information is performed at the level of PVSS panels and
scripts. It permits the construction of an autonomic control system as PVSS is aware
of the changes and can update the different elements as shown in Chapter 7 section
7.1.1.5 and 7.1.2.3. In that case PVSS programs the TFC switch using the
connectivity and then configure the readout supervisor according to the running mode.

8.3.4 Displaying the routing table in PVSS

After describing the generation of the routing tables the next section will detail how
the generated information is loaded into the switch.

Chapter 8 Structure of the GUI layer

 213

All the hardware must be configured via PVSS. Switches will also be configured
using PVSS.

PVSSLoadRoutingTable is a function of CIC_DB_lib to be used to load the routing
table of a given switch.

The signature of the function in PVSS is as follows:

Int PVSSLoadRoutingTable (string switch_name,
 dyn_string14 & destination_name_list,
 dyn_string & nextport_list,

 dyn_string & ipnext_list,
 dyn_string & subnetnext_list,
 dyn_string & macaddnext_list,
 string ErrMess);

This function can be called in a PVSS script.

Figure 113 and Figure 114 show PVSS panels to load the routing table of a given
switch from the CIC DB to PVSS. Figure 113 displays all the switches. The user
selects one switch and pushes the “Load Routing Table” button. Then Figure 114
displays the routing table of the selected switch.

Figure 113. First step: select a switch.

14 Dyn_string is a type specific to PVSS and it is similar to the vector<string> type, part of STL.

Chapter 8 Structure of the GUI layer

 214

Figure 114. Loading the routing table.

8.4 Conclusion

In this chapter the GUI layer has been described. Different tools have been
implemented. CDBVis is a Python graphical tool which displays the connectivity of
devices. It also permits to insert the connectivity.

PVSS panels have been built to configure modules based on the PVSS library for
recipes and on the PVSS CIC_DB_lib. It includes displaying the routing tables and
handling partitions.

One of the common issues of the GUI layer is to display the information in a user-
friendly way. Viewing the connectivity information with all the links was not easy to
manage. Improvements can still be done.

With this layer, the database and the object layer could have been tested. Indeed bugs
in the PVSS library for recipes and in the CIC_DB_lib could have been discovered
and fixed.

Moreover with this type of architecture, one can build a single click control system.
The control system based on PVSS can access to any types of information stored in
the CIC DB. So PVSS panels can be implemented to modify and load recipes to the
devices part of the partition using the connectivity information. The next chapter
focuses on the validation of the routing and destination algorithms in PL/SQL.

Chapter 8 Structure of the GUI layer

 215

References

[1] T.Johansen, L.Abadie, E. van Herwijnen, R. Shade, LHCb Configuration Database
Visualizer, LHCb Technical Note v1r2, September 2006. LHCB COMP 2006-028.

[2] FwHW tool website,
http://lhcb-online.web.cern.ch/lhcb-online/ecs/PVSS_TELL1/default.html.

Chapter 9 Validation of the routing and destination algorithms

 216

Chapter 9 Validation of the routing and destination
algorithms

The chapter describes the tests which have been carried out to validate the algorithms
related to paths (database layer). First we give a brief reminder of the
routingtable_pck PL/SQL. Secondly we describe the different topologies to which
the routing and destination algorithms have been applied and give some
measurements, namely the execution of creating a routing table. Thirdly we explain
the results of the test and expose the parameters which have an impact on the
performance of the algorithm. Then, we show how to load the routing table once it is
generated in the CIC DB. Finally we describe the test done to validate the dhcp config
file generated by the Perl script “dhcpCfg_generate.pl” by loading it into a DHCP
server.

9.1 Outline of the routingtable_pck package (reminder)

As explained in the previous chapter, the routing tables of the DAQ switches, the
destination of the DHCP servers and the TFC switch are generated using a PL/SQL
package, routingtable_pck. This package is only used for the TFC and DAQ
connectivity.

Performance for generating these tables is not an issue. Destination and routing tables
will be generated and stored in the CIC DB in advance. The information can be
loaded whenever it is required. However loading should be very fast.

It is important to note that these predefined tables are stored and maintained by
functions in the routingtable_pck package. They are executed whenever a change
related to the TFC or DAQ systems occur, such as:

• Adding new links between existent or new modules. If the modules are new, they
need to be inserted. Rows will be inserted in the FUNCTIONAL_DEVICES,
HARDWARE_DEVICES and DEVICE_HISTORY tables. The ports of the
new modules need also to be inserted. Rows will be inserted in the
PORT_PROPERTIES, HWPORT_PROPERTIES and IPINFO tables (for
DAQ modules only). Then the links between the modules must be inserted. Rows
will need to be inserted in the CONNECTIVITY table.

• Deleting links. If the link between (device A, port X) and (device B, port Y) does
not exist any more, this link should be deleted. So the corresponding will be
deleted from the CONNECTIVITY table.

• Disabling a functional device. For instance, the farm node FRAM0101 has to be
disabled because it does not work properly. Its attribute
FUNCTIONAL_DEVICE .nodeused will be set to 0. Automatically the links
going in and out from the disabled device will be disabled. So the
CONNECTIVITY.lkused of these links will be set to 0.

• Disabling a link. For instance for debugging reasons some links must be disabled.
CONNECTIVITY.lkused of these links will be set to 0.

• Updating any of these following attributes for a link: bidirectional_link_used,
link_type, system_name.

Chapter 9 Validation of the routing and destination algorithms

 217

For the benchmarks, I applied the following method of testing, as recommended by
the CERN central DB support group: each query or PL/SQL function was performed
5 times. I took the mean, noted ā of the 5 execution times (time interval between
queries: 1s -5s – 5mn- 1h) and the standard deviation, noted σ. I also displayed the
worst and best cases. I used the timing feature of Oracle SQL*plus. It is important to
note that this database is accessed by hundreds of users. So some results can change
depending on the load on the database when executing the test.

Tests have been performed on my desktop PC (Windows XP Professional version
2002), of almost 3 years old (768MB, Pentium 4 and 2.4 GHz).

9.2 Robustness of the routing and destination algorithms to
different topologies

One of the tests was to test the robustness of the routing algorithm to different
network topologies.

9.2.1 Destination algorithm applied to the TFC system

A simplified view of the TFC system is shown in Figure 115. It can be considered as a
tree with the TFC switch (THOR_00) at the root and the TELL1 boards (represented
by SubDet_L1FE) as its leaves. TTCtx, TTCoc and TTCrx are fan-outs, i.e. they split
the signal so that it can reach by more devices. SubDet_L0FE contains L0 electronics
whose connectivity is represented in Figure 116.

Chapter 9 Validation of the routing and destination algorithms

 218

Figure 115. Simplified overview of the TFC system.

Figure 116. Connectivity for the L0 electronics.

Chapter 9 Validation of the routing and destination algorithms

 219

Table 19 shows he number of devices of the given type in the TFC system. The
connectivity of the L0 electronics for each subdetector could not be known at the
writing time of the PhD. During my PhD studies, I could not get the final connectivity
schema of all the subsystems. The only thing I knew that there are around 50,000
modules involved in this connectivity and also 3 levels. So the connectivity for the L0
electronics has been simulated as Figure 116.

Apart from that, the upper part of the connectivity is known.

There is one link between an ODIN and the TFC switch. There is one link between a
TTCtx and the TFC switch.

A TTCtx drives 10 TTCocs, and a TTCoc 8 TTCrxs. Each TTCrx is connected to 6
L0FE_FSTs. A L0FE_FST is connected to 5 L0FE_SCDs. A L0FE_THD serves 10
L0FE_SCDs. A L0FE_FTH is connected on its input to 5 L0FE_FTH. The
L0FE_FTH are connected to the TELL1 boards. The connectivity between
L0FE_FTHs and TELL1 boards depends on the subsystem, as the number of TELL1
boards is different. All the links are unidirectional. The host nodes are the TELL1
boards and the readout supervisors, in italic in Table 19. MuninL1_00 and
MuninL0_00 correspond to the Throttle switches which have been explained in
Chapter 1. Munin0 is a throttle OR switch (32 inputs *1 output). These three devices
are used to alert the readout supervisors in case of buffer overflows. .

Chapter 9 Validation of the routing and destination algorithms

 220

Device Type Name Number of devices
ODIN (readout supervisor) 16
THOR_00 (TFC switch) 1
TTCtx 15
TTCoc (Optical coupler) 150
TTCrx 1200
L0 electronics
First Layer (L0FE_FST)
Second Layer (L0FE_SCD)
Third Layer (L0FE_THD)
Fourth Layer (L0FE_FTH)

47520
7200
36000
3600
720

TELL 1 boards
VEL0_A
VELO_C
PUS
RICH1
TT
IT
OT_A
OT_C
RICH2
PRS
ECAL+L0CALO
HCAL
MUON_A+L0MUON
MUON_C+L0MUON
L0DU

384
46
45
12
24
48
45
31
38
36
11
13 +1 L0CALO
12
7 + 3 (L0MUON)
7 + 4 (L0MUON)
1

Munin0 15
MuninL0_00 1
MuninL1_00 1
Total Number of devices 49303

Table 19. Number of devices per type.

Devicename Nb of destinations Nb of paths Execution time

(mn)
TFC switch 384 (= nb of

TELL1)

36000 (equal to the
number of
L0FE_SCD)

Try 1 : 1mn31s07
Try 2 : 1mn07s04
Try 3 : 1mn03s06
Try 4 : 1mn05s06
Try 5 : 1mn31s03
ā: 1mn15s06
σ: 0mn15s

Table 20. Result of the execution time of the destination table of the TFC switch.

The generation of the destination table takes more than one minute.

9.2.2 Routing algorithm applied to the Flower topology

Chapter 9 Validation of the routing and destination algorithms

 221

Figure 117 represents the old design of the DAQ network (until summer 2005). The
shortest path should always be selected if several routing paths to a same destination
are found. This topology was very useful to check that the algorithm was robust
against cycles (i.e. the first node is equal to the last node in the path) [1].

Figure 117. Flower topology.

Referring to Figure 117, data is coming out from the FEs (there are TELL1 boards
from the different subdetectors) to the MSs (there are switches). Each FE (340
sources) is connected to a port of one MS (12 Multiplexer switches).

Then the data is multiplexed and go to the Flow devices. There are 6 Flow devices
which are fully connected. Each MS is connected to a port of a Flow switch. The links
between them are bidirectional. In the DAQ system, these links are the only ones
which are bidirectional. Then the data goes from the Flow devices to the SFCs
(SubFarm Controllers, PCs which rebuild the event). Then each SFC (102 sub-farm
controllers) is connected to a port of a Flow switch. In other words, each Flow has 17
output ports connected to 17 SFCs (17*6=102). All the links carry data traffic (this is
the link type).

The host nodes are FEs and SFCs in Figure 117.

Each SFC is connected to a sub-farm switch which is connected to 20 sub-farm nodes
(not shown in the picture).

The routing tables of Flow_1 … Flow_5, MSs have been generated with success.

Table 21 gives the results of the tests. We have verified mathematically that the
number of paths found is correct. In our case, we could exploit some properties of the
graph. For instance, for the Flower topology, to count the number of paths between a

Chapter 9 Validation of the routing and destination algorithms

 222

Flow device and a device of type SFC, permutations are used (see Appendix J for the
proof). Figures in red represent the min and max values of the execution time.

Devicename Nb of

destinations
Nb of possible
paths found

Execution
time
(in sec.)

Nb of tries
(out of 5)

Flow_0 102 (only the
SFCs)

5542 19.02
5.04
6.05
6.09
22.02
ā: 11.64
σ: 7.32

1
2
3
4
5

Flow_3 102 (only the
SFCs)

5542 13.06
7.00
5.05
5.09
18.02
ā : 9.64
σ : 5.12

1
2
3
4
5

Flow_5 102 (only the
SFCs)

5542 9.05
8.06
9.03
10.08
21.00
ā :11.44
σ : 4.83

1
2
3
4
5

MS_03 102 (only the
SFCs)

5542 5.02
6.02
6.05
6.01
13.09
ā : 7.24
σ : 4

1
2
3
4
5

MS_10 102 (only the
SFCs)

5542 3.09
4.09
4.09
4.09
8.07
ā : 4.68
σ :1.75

1
2
3
4
5

Table 21. Summary of the execution time of routing tables.

What is essential is to ensure that the routing tables generated are correct and
consistent. When the run starts, the ECS will load the routing tables from the CIC DB
to PVSS and from PVSS to the switches. As the routing tables have been already
generated, the loading is much faster see section 4.

9.2.3 Routing algorithm applied to the DAQ topology

Chapter 9 Validation of the routing and destination algorithms

 223

Figure 118. The foreseen topology of the DAQ. Links which are not arrow are bidirectional links.

Figure 118 describes the foreseen connectivity of the DAQ system. There are
different types of links (data, storage, control, mep_request traffic and mixed_traffic
which combines both mep_request and data traffic). The routing tables of the Force
Ten - also called DAQ_ROUTER_1- ,DS_1 to DS_50 and DS and CS_1 to CS_50
(Control Switch) should be generated.

The host nodes are the farm nodes (Trigger Farm + Local Storage), the TELL1
boards, the readout supervisors and the controls PCs.

In the tests, there were 329 TELL1 boards connected twice to DAQ_ROUTER_1.
Then there were 10 links between DAQ_ROUTER_1 and each of the 50 DS
(Distribution Switch). Each DS is connected to 40 farm nodes. There is one link in
brown (referring to Figure 118) between DS and DAQ_ROUTER for MEP request,
for the readout supervisor. There are 16 readout supervisors which are connected to
the DAQ_ROUTER_1. The storage has been represented as sub-farm with 50 PCs
(represented with a cylinder). The TELL1 boards are controlled by controls PC via
Control Switches, but it is not shown in Figure 118.

Only the links between DSs and farm nodes are bidirectional, the other ones are
unidirectional. There are four types of links, data, control, storage and mep_request.
Only the links between DSs and farm nodes carry a mixture of traffic, storage,
mep_request and data.

With this topology, I verified that my algorithm produced consistent routing tables.
Consider the routing table of the DAQ_ROUTER_1. The possible destinations are the

Chapter 9 Validation of the routing and destination algorithms

 224

2000 farm nodes and the 16 readout supervisors. To send a packet to a given farm
node there are 10 possible paths as there are 10 links from DAQ_ROUTER_1 to a
given DS. However, only one out of the 10 links should be selected, otherwise the
routing table is inconsistent as the router will not know to which output port it should
forward the packet. The link type compatibilities are also been checked. For instance,
none of the farm nodes of the local storage are in the routing table of
DAQ_ROUTER_1 as data traffic is incompatible with storage traffic.

Devicename Nb of

destinations
Nb of
possible
paths found

Execution
time
(in sec.)

Nb of tries
(out of 5)

DAQ_ROUTER_1 2000 + 16 (the
farm nodes of
the EFF
+ 16 readout
sup.)

2016 (without
taking into
account port)
20016, with
ports

15.06
12.06
12.02
13.02
15.09
ā: 13.45
σ : 1.37

1
2
3
4
5

DS_1 40 +50 + 16
(the farm
nodes + PCs
part of the
storage +
readout
supervisors)

106 in both
cases

3.02
2.02
3.01
3.02
4.04
ā : 3.02
σ : 0.65

1
2
3
4
5

DS_40 40 +50 + 16
(the farm
nodes + PCs
part of the
storage +
readout
supervisors)

106 in both
cases

3.08
3.04
3.01
3.02
4.00
ā : 3.23
σ : 0.38

1
2
3
4
5

DS 50 (only the
storage PCs)

50 in both
cases

3.00
2.06
2.08
5.02
8.01
ā: 4.03
σ : 2.27

1
2
3
4
5

CS_20 40 (only farm
nodes)

40 in both
cases

3.05
4.03
3.02
3.00
8.07
ā: 4.23
σ : 1.96

1
2
3
4
5

Table 22. Result of the execution of routing tables for switches of the DAQ foreseen topology.

Chapter 9 Validation of the routing and destination algorithms

 225

9.2.4 Generating all the routing tables for the DAQ system

Another test was to generate all the routing tables of the DAQ system in one go,
sequentially. So I wanted to measure the execution time of 50+50+1+1=102 routing
tables, resp. DS, CS, DAQ_ROUTER_1 and DS_STORAGE.

Here again, I have repeated 5 times the test using a PL/SQL script. It has been
executed from SQL*plus. The results are presented in Table 5.

Try Execution time (sec)
1
2
3
4
5

63
79
96
84
86
ā: 81.6
σ: 10.2

Table 23. Execution time for generating routing tables.

N.B: in the DAQ system, all the intermediate nodes correspond to devices of type
switches or routers. FUNCTIONAL_DEVICES.node is the attribute which permits
to distinguish a host node from an intermediate node. It is set to 1 if it is a host node
and 0 if it is an intermediate node. So to select all the DAQ switches we just select
devices which belong to the DAQ system and FUNCTIONAL_DEVICES.node=0.

The advantage of generating the routing tables sequentially is that the first part of the
algorithm is performed only once. Indeed as all the switches are in the same system,
i.e. DAQ, so the simplified view of the connectivity in which the ports are removed
(see Chapter 6 section 6.2.2, is the same. This view does not depend on the switch. So
the AGGREGATED_LINKS table is the same if we generate the routing table for
DAQ_ROUTER_1 or DS_1, for instance.
The same remark is done for grouping links per pair. This step is independent from
the switch. So the LINK_PAIRS table has exactly the same content regardless of the
switch given in input. So there is no need to repeat this operation 102 times (there are
102 switches so 102 routing tables to be created), once is sufficient. That is why the
execution time of generating all the routing tables is not very high. The first part takes
most of the execution time as it is explained in section 3.3.

Using this remark, these two tables can be created once, when after a change in the
DAQ network, all the routing tables need to be updated. It spares time.

9.3 Comments on the test results

9.3.1 Robustness

Using the DAQ flower topology, I could check that the routing algorithm was robust
against cycles and produced consistent routing tables.

Also I verified that the destinations and the number of possible paths found were
correct.

Even if it is very unlikely that creating a routing table is performed concurrently, I
have tested this situation. It worked in the sense that the routing tables were created

Chapter 9 Validation of the routing and destination algorithms

 226

properly and no SQL statements failed. For instance in one of the versions, I used
sequences for the pathid. A sequence was created whenever a new switch as input
parameter was given. If the sequence already exists, I set it back to 1. This statement
fails if executed for the same switch at the same time.

9.3.2 Performance optimization

The performance of generating routing tables was optimized together with the central
database support on the basis of detailed execution trace files.

The generation of 6 routing tables took 3mn34 sec. We achieved an improvement of a
factor of 4, after optimization. In routingtable_pck PL/SQL package, there is an
extensive use of:

• Bind variables (it allows producing generic SQL statements and it reduces the
parse execution time [2]);

• Temporary tables as temporary storage of the results (the main advantage is the
content of these table is private to the session);

• Native Dynamic SQL instead of the DBMS_SQL package;

• Avoid functions in the WHERE clause if possible to allow index usage;

• Join instead of IN : for instance use of
“select t.devicename from FUNCTIONAL_DEVICES t,
FUNCTIONAL_DEVICE_TYPES e where t.devicetypeid=e.devicetypeid and
e.devicetype like ‘DAQ_SWITCH_4_’ ;”
Instead of:
“select devicename from FUNCTIONAL_DEVICES where devicetypeid in
(select devicetypeid from FUNCTIONAL_DEVICE_TYPES where e.devicetype
like ‘DAQ_SWITCH_4_’) ;”

These tuning issues enable to improve the performance when generating routing
tables sequentially. The SQL queries are cached in memory and data blocks already
used are searched in memory instead of physical memory.

9.3.3 Analysis of the routing algorithm by parts

The algorithm has four parts (see Chapter 6 section 6.2.7) which have different
contributions to the total execution time. In my previous tests, the average execution
time taken by each of these four parts is shown in Table 24. I used the dbms_utility,
an Oracle package to measure the time taken by each of the four blocks.

An analysis of the results shows that:

• For switches in {Flow_0, Flow_3, Flow_5, MS_03, MS_10}, the last part, i.e.
inserting everything in PATH_LINES and ROUTING_TABLE, takes most
of the execution time (around 45.7 %). The second part, i.e. finding all the
paths, is the fastest. It represents around 6% of the execution time. The first
(filling the AGGREGATED_LINKS and LINK_PAIRS) and the third
(mapping with portid and selecting one routing path per pair of [destination,
network interface]) parts represent 19.5% and 28.8%, respectively.

• For switches in {DS_1, DS_40, DS, CS_20}, the first part takes most of the
execution time with 83.1%. The second part is still the fastest with 2.2%. The
third and fourth parts represent 11.1% and 3.6% respectively.

Chapter 9 Validation of the routing and destination algorithms

 227

• DAQ_ROUTER_1 is special. The second part is still the fastest (0.7%). The
third part takes the most of the execution time with 44.6%. Then it is the
fourth part with 34.8%.

The second part is always the fastest to be executed. It can be explained by the fact
that the SQL statements in this function are against LINK_PAIRS and
PATH_LINES_TEMP tables which have some thousands rows (never more than ten
thousands rows), so the table size is small. Then the fact that the second part takes
more time for {Flow_0, Flow_3, Flow_5, MS_03, MS_10} is due to the maximum
path length. The maximum path length for these devices is respectively {6, 6, 6, 7, 7}
whereas for {DAQ_ROUTER_1, DS_1, DS_40, DS, CS_20}, the maximum path
length is {2, 2, 2, 1, 1}.

Devicename Block Distribution time in %
Flow_0 1

2
3
4

22.8
5
25.7
46.5

Flow_3 1
2
3
4

13.9
5.9
26.4
53.8

Flow_5 1
2
3
4

18.7
5.5
28.3
47.5

MS_03 1
2
3
4

21.8
7.2
32.8
38.2

MS_10 1
2
3
4

20.3
6.5
30.8
42.4

DAQ_ROUTER_1 1
2
3
4

19.9
0.7
44.6
34.8

DS_1 1
2
3
4

82.7
1.5
12.1
3.7

DS_40 1
2
3
4

82.5
1.6
13.1
2.8

DS 1
2
3
4

82.8
3.3
10.2
3.7

CS_20 1
2
3
4

84.4
2.6
9.1
3.9

Table 24. Distribution of the average per part.

Chapter 9 Validation of the routing and destination algorithms

 228

The third part has the highest execution time for DAQ_ROUTER_1. This is because
of the ten links between DAQ_ROUTER_1 and DAQ_DS_XX. So the number of
paths found with the second function is multiplied by ten. In the other cases, there is
only one link between devices. So there are fewer rows inserted in
ROUTING_TABLE_TEMP than for DAQ_ROUTER_1 (less than 150 against more
than 20000). Also, in this step one routing valid path is selected by distinct pairs of
[destination, network interface]. The SQL statement is faster when there is only one
choice and when the number of destinations is smaller.

The fourth part takes most of the execution time for {Flow_0, Flow_3, Flow_5,
MS_03, MS_10}. This function inserts and deletes the biggest number of rows with
CHECK options (primary key, foreign key, etc.), as temporary tables have no check
options. Even for DAQ_ROUTER_1 this part is quite time consuming but less than
the third because of the routing path selection. There are a lot of rows which are
inserted during these two parts.

The first part takes most of the execution time for {DS_1, DS_40, DS, CS_20}
because compared to the other functions; the number of rows processed is smaller.
Indeed the first part inserts around 4550 links in AGGREGATED_LINKS and around
50 in LINK_PAIRS whereas the other functions inserts less than 150 rows.

To sum up, the execution time of creating a routing table depends on:

• The number of aggregated links (or logical links) in the system connectivity (the
first part is influenced);

• The maximum path length (second part);

• The number of redundant links for the first and last links in the routing path found
(third part);

• The number of distinct pairs [destination, network interface] (third part).
The higher these parameters, the slower the execution time is.

9.3.4 Analysis of the destination algorithm by parts

The second part is not the fastest because of the maximum path length, equal to 8.

The first part is faster as there is no bidirectional link, so the number of insert
statement is reduced.

Devicename Part Distribution time in %
THOR_00 1

2
3
4

12.36
19.39
39.09
29.16

Table 25. Distribution of the average time per part for the TFC switch.

The third part is the highest because of the complex insert statement, similar to the
routing tables. The fourth part is still higher because of the total number of paths
(36000).

The number of nodes and links for the TFC system is higher than in the DAQ system,
hence a higher execution time. The maximum path length is also higher.

Chapter 9 Validation of the routing and destination algorithms

 229

9.3.5 Parameters which have an impact on the different steps of
the algorithm

The execution time of a routing or of a destination table is not fixed. It depends
mainly on the following parameters:

• The number of links stored in the connectivity table. A link should be counted
twice if the link is bidirectional. These two numbers have an impact on the first
part of the algorithm which fills the AGGREGATED_LINKS and LINK_PAIRS
tables.

In the TFC system there are a lot of links roughly 85309 links (no bidirectional
link) stored in the connectivity table. In the DAQ system, there are roughly 5384
links + 2000 bidirectional links for the current version and around 2611 links + 15
bidirectional links for the Flower topology. It takes 3.48 sec in average to
perform it for the DAQ flower topology, 3.54 sec for the DAQ current topology
and 9.88 sec for the TFC system. For the HCAL connectivity composed of 13952
unidirectional links, it takes 4.3 sec. Figure 119 shows that the execution time is a
linear function of the number of rows (equation y=7.82*10-5x+3.2). It takes
roughly 3 sec to execute the SQL statements which return no rows. In that case
both tables AGGREGATED_LINKS and LINK_PAIRS are empty. We could
check the result by inserting a functional device which is not connected and part
of a fake subsystem.

0

2

4

6

8

10

12

0 50000 100000

number of links

ex
ec

u
ti

o
n

 t
im

e
o

f
th

e
fi

rs
t

p
ar

t
(s

ec
)

Series1

Figure 119. Impact of the number of links on the execution time.

The number of links has also an influence on the second part of the algorithm as
the LINK_PAIRS table will be contain more rows.

• The maximum path length is also important, especially for the second part of the
algorithm which finds the valid paths. This parameter is not obvious to quantify as
it depends on the number of links and also on the number of paths grouped by

Chapter 9 Validation of the routing and destination algorithms

 230

path length. Table 26 shows the impact of the maximum path length. The longest
path found is in the TFC system. Also this system contains the most number of
paths.

 Length<=3
sec/nb of paths

Length=4
sec/nb of paths

Length=5
sec/nb of paths

Length=6
sec/nb of paths

Length>=7
sec/nb of paths

DAQ_FLOW
0.05 sec/
123+340

0.10sec/1020 0.13sec/2040 0.14sec/2040

DAQ_ROUTER 0.07 sec/2016
TFC_SWITCH 0.26 sec/0 0.58sec/0 3.18sec/0 9.36sec/0 21.58/36000
HCAL_PMT 0.01sec/3

Table 26. Influence of the maximum path length.

9.4 Loading the routing table into a switch

After describing the generation of the routing tables the next section will detail how
the generated information is loaded into the switch.

In chapter 8, displaying the routing tables in PVSS has been explained. Some figures
about the execution time and how to load the routing table into a switch are exposed.

9.4.1 Loading the routing tables from the CIC DB to PVSS

It takes roughly 0.125s to load a routing table of a distributed switch from the CIC DB
to PVSS, on Windows and on Linux, it takes roughly 0.075s (see Figure 120).
Loading the routing table of DAQ_ROUTER_1 requires more time, 0.875 s on
Windows and 0.458 s on Linux. One reason may be that PVSS runs faster on Linux
than on Windows as it uses a lot of sockets to communicate between the different
managers.

Chapter 9 Validation of the routing and destination algorithms

 231

Figure 120. Execution time to load a routing table from the CIC DB to PVSS. The output at the
top is from Windows, the one at the bottom, from Linux.

9.4.2 Loading the routing tables from PVSS to a physical switch

There are several ways to load a routing table into a switch/router. It depends a lot on
the type of switches. However the principles are the same:

• Open a telnet communication via the port 23 of the switch, using a socket;

• answer the questions asked by the switch to program the routing table ;

• write a program to insert the routing table into the switch, knowing the order of
the questions.

As a proof of the concept, I wrote a server to load and check the loading of a routing
table from PVSS to a switch.

Figure 121 illustrates the principles of the implementation. Using the CIC DB PVSS
library, the routing table of a selected switch can be loaded into PVSS.

Chapter 9 Validation of the routing and destination algorithms

 232

Then the routing table is loaded into the selected switch (DAQ_SWITCH_06, in the
example) via the RT_server which is a DIM server. The RT_server receives the
routing table from PVSS via DIM, a protocol [3] which is lighter than CORBA [4].
Then the RT_server opens a socket on the telnet port of the switch and inserts the
routing table as if it was in front of a command line.

Figure 121. Principles of loading a routing table into a switch.

This part has to be adapted by the network team as the implementation depends on the
type of switch. This setup can be extended to be autonomic. The user changes the
network from some PVSS panels. Then the routing tables are updated automatically
using the routingtable_pck PL/SQL package. Then using DIM and the RT_server the
routing tables are programmed in the switches of the DAQ.

9.5 Generation and loading the dhcp config file into a DHCP
server

Here also performance is not really an issue as the dhcp config files will also be
generated “offline”. The essential point was to test that the IP address assignment to
the DAQ hosts obtained by creating the dhcp config file was correct and is accepted
by the DHCP server.

9.5.1 Prerequisites

To allow automatic creation of a DHCP config file, the following components are
required:

• Linux operating system;

Chapter 9 Validation of the routing and destination algorithms

 233

• Perl;

• Perl DBI module to query the configuration database;

• Perl XSLT module to allow the use of XSLT functionalities;

• Connectivity with the IP information and boot image information tables filled
accordingly in the CIC DB;

• Tns_names.ora to locate the CIC DB.

9.5.2 Usage

First the user inserts the generic options in “dhcp_options.xml”.

Then, in a command line, the user types “perl dhcpCfg_generate.pl
<dhcp_server_name>” as shown in Figure 122. In the example, we generate the
dhcp_conf for DAQ_CTRLPC_08.

Figure 122. Generating the dhcp config file from a cmd line.

The dhcp_file.xml and an extract of the dhcpd.conf are shown in Appendix C.

It takes in average 40 sec to generate the “dhcpd.conf” file. There are 40 host nodes
which get their IP addresses from DAQ_CTRLPC_08 as one can expect it.

Then with the help of the network team, the “dhcpd.conf” produced by this
application has been copied to etc/dhcpd.conf of the dhcp_server. The file has been
accepted and the test was successful.

The other test was to exclude 10 farm nodes and check that they have disappeared
from the “dhcpd.conf”. Farm nodes from ‘DAQ_NODE_08_00’ to
‘DAQ_NODE_08_09’ have been excluded, i.e.
FUNCTIONAL_DEVICES.nodeused=0. The farm nodes excluded are not in
“dhcpd.conf” any longer.

9.6 Conclusion

This chapter has presented the tests carried out to verify the robustness of the routing
and destination algorithms. Performance on the execution to create these tables was
not an issue. It takes between 5 sec and 1mn15 sec to generate a routing table or a
destination table depending on the router or server and the topology of the system.
The algorithm depends on two parameters, the maximum path length (less than 10)
and the number of links of the connectivity. Verifying the correctness of the routing
and destination tables was essential to ensure events data routing from the TELL1 to
the farm nodes and to configure the network equipment with IP addresses.

The routing and destination tables are automatically maintained by the
routingtable_pck PL/SQL package. No human intervention is required to update the
content of the tables as the package has been implemented following the autonomics
guidelines.

Loading these tables from the CIC DB to PVSS should be fast, less than a few
seconds. It takes between 0.075s and 0.875 s to load the routing tables, depending on

Chapter 9 Validation of the routing and destination algorithms

 234

the size of the routing table and on the operating system (PVSS runs faster on Linux
than Windows).

Chapter 9 Validation of the routing and destination algorithms

 235

References

[1] Alfred V.AHO, Jeffrey D.Ullman, Foundations of the Computer Science. C
Edition: Computer Science Press. An imprint of W.H. Freeman and Company. New
York. 1995. ISBN 0-7167-8284-7. 786 p.

[2] Thomas Kyte, Effective Oracle by Design, 2003. Ed Osborne: Oracle Press.
ISBN 0-07-223065-7. 646 p.

[3] DIM Distribution Interface Management, http://dim.web.cern.ch/dim/

[4] CORBA, http://www.corba.org/

Chapter 10 Validation of the CIC_DB_lib

 236

Chapter 10 Validation of the CIC_DB_lib

This chapter describes the different tests carried out to validate the object layer,
namely the CIC_DB_lib (C code) and its two bindings (PVSS and python) and the
GUI layer too.

The first part describes common tests to verify that the functions of the CIC_DB_lib
work correctly. It includes tests on the bulk collect insert and update and on the
automated updates further to a change in the connectivity or an update of the status of
a device. The second part shows how the HCAL connectivity has been inserted using
CIC_DB_lib and how modules could be configured using the PVSS CIC_DB_lib to
get connectivity information. The third part explains how a slice of the VELO
connectivity has been inserted using the Python CIC_DB_lib. The VELO connectivity
includes the microscopic level too. So we could validate the functions related to
inserting and querying microscopic view. Finally I present some tests to simulate the
device history. In the tests, updating wrongly a status of devices was performed such
as updating the status of a destroyed device.

10.1 Validation of the insert and update statements

10.1.1 Test Frame

The different tests have been carried out using C, python and PVSS programs. A C
program has been implemented to verify the behavior of queries when run
concurrently.

Some of the scripts used for tests are stored on the CERN network at: dfs
(G:\Experiments\Lhcb\group\TFC\CICDBproject).

The main points I wanted to check were:

• If the functions built with their interfaces (Python + PVSS) are doing what
they are supposed to do.

• The behavior of the functions (especially update, delete and insert) in case of
user errors or constraint violations.

• The behavior of some functions (insert and update functions) when run
concurrently.

• The behavior of functions when performing bulk inserts or updates.

• The automatic updates of information related to paths when there is a change
in the connectivity table (insert, delete and update a link).

Finally the CIC_DB_lib and its interfaces have been validated by their use in different
projects (HCAL, VELO, DAQ and TFC).

10.1.2 Multiple insertions

The TFC and DAQ connectivity presented in Chapter 5, has been inserted using
functions included in CIC_DB_lib. I have written a C application for each subsystem.
The following functions have been used:

• InsertMultipleDeviceTypes to insert many device types in one go;

Chapter 10 Validation of the CIC_DB_lib

 237

• InsertMultipleFunctionalDevices to insert many functional devices;

• InsertMultiplePorts to insert many ports;

• InsertMultipleSimpleLinkTypes to insert link types;

• InsertMultipleMacroLinks to insert links between devices.
A simple way to verify that the insertions were correct in terms of number of rows
and right data included in the right place (included NULL values) was to query them
using functions get information about a device type row, a device row, a port row, a
link type row and link row. The same type of tests was performed for the update and
delete based functions. So with this way of doing, the user can check that what he has
inserted was what he wanted.

I also faked some errors such as links starting from an already used portid or ports
belonging to a non-existent functional device. These tests were meant to verify the
database constraints and the error handling.

10.1.3 Memory leak
The CIC_DB_lib includes functions such as getting the paths between two devices or
inserting many rows in one go (the initialization of the cache was properly done),
which perform a lot of memory allocation. Using the Valgrind tool [1], one could
verify if there are memory leaks and solve the problem. In my case, I could find some
blocks that were not released.

The methodology used was to write an executable which calls these functions and
then call
valgrind with –tool=memcheck --leak-check=yes <name of the

executable> to detect memory leaks.

10.1.4 Verification of the autonomics features

Some of the functions to update information have been tested when creation the dhcp
config file (Chapter 9). Nodes and links have been excluded.

I have also verified that after:

• updating nodeused, or after updating a link attribute such as
bidirectional_link_used, linktypeid, lkused, system_name part of the TFC or
DAQ, the updates of PATH_LINES, ROUTING_TABLE and
DESTINATION_TABLE were performed.

• deleting of a device, of a port and of a link which happens in the DAQ or TFC
system, the PATH_LINES, ROUTING_TABLE and DESTINATION_TABLE
were updated dynamically;

• inserting a link, PATH_LINES, ROUTING_TABLE and
DESTINATION_TABLE were updated dynamically;

• inserting or changing the status of a device was automatically reported in the
DEVICE_HISTORY (including the components of a board if any);

• changing the status of a device was performed in a coherent manner (the required
updates to other tables were made, such as updating the status of the board
components if necessary);

• swapping two devices was allowed (same type and same connectivity).

Chapter 10 Validation of the CIC_DB_lib

 238

For inventory/history information updates and deletions, giving incoherent input
parameters have been tested to verify that the changes were not performed and
nothing was blocked.

10.1.5 CDBVis

CDBVis is another way to validate CIC_DB_lib as it uses insert and update based
functions. It permits to verify that all the links have been inserted. Referring to Figure
123, the output connectivity of the VELO_REPEATER_BOARD_00 has not been
inserted yet as the last type of devices in any subsystem dataflow is the TELL1
boards.

Figure 123. Example of an incomplete connectivity for the VELO_REPEATER_BOARD_00.

Part of the MUON connectivity has been inserted in the CIC DB using CDBVis. On
the opposite, it was a good way to test and debug CDBVis too. For instance, we found
bugs when viewing paths (not the correct last node).

10.2 Use of CIC_DB_lib and its PVSS binding by the CALO
subdetector

In Chapter 2, section 2.1.3, there was a need to get the connectivity between devices
to configure the modules. The connectivity of the HCAL has been described in
Chapter 2, section 2.1.3. The next two subsections explain the use of CIC_DB_lib to
insert and query connectivity information.

Chapter 10 Validation of the CIC_DB_lib

 239

10.2.1 Inserting the connectivity in the CIC DB

Configuration information is used to get the SPECs addresses of the hardware and
connectivity information will give the DAC board name, INT board name and the FE
name which drive the given channel name (not direct connection).

Text files exist which include device types, devices and links between devices. Thus I
could insert the connectivity with CIC_DB_lib. Around 14,000 links were inserted.
There are 1488 channels, 1488 PMTs, 52 LED1s, 52 LED2s, 8 DACs, 4 INTs, 4 FEs
and 4 Controls PCs. (see Appendix L for the C code written to insert the HCAL
connectivity).

Inserting the connectivity is done as follows (order to respect the database
constraints):

1. Insert all the device types of the system (HCAL_CHANNEL for instance);

2. Insert all the functional devices with their serial number
(HCAL_CHANNEL_001);

3. Insert all the ports group by functional devices;

4. Insert all the link types (data_signal);

5. Insert all the links between (functional device, port number).

The insertion was successful as we check that the number of devices sorted by types,
the number per ports and links were the same as the numbers in the text files.

However it is up to the user to ensure that all the devices, ports and links have been
inserted. There is no way to know in advance how many devices should be inserted
per subsystem for instance.

10.2.2 Getting the connectivity between 2 devices

The CALO group uses the PVSS binding of CIC_DB_lib.

Use case 1 (Chapter 2, section 2.1.3) can be solved by getting the paths between a
channel and a DAC, a channel and an INT and finally between a channel and a FE
board. In Use case 2 and use case 3, the connection involved is point-to-point
connection as a channel is directly linked to two LEDs and to a PMT. Their
requirement was to get the connectivity between all their channels and DAC, INT and
FE in less than 100 s.

To respond to their requirements, I suggested them to use
PVSSGetDetailedConnBetweenDeviceDevType. This function allows getting
detailed connectivity between a given device and a device type.

Example of usage (PVSS script):
dyn_string nfrom_list, pfrom_list, nto_list, pto_list, lkinfo_list,
devicename_list;
dyn_int pwayfrom_list, pwayto_list, pid_list,
lkpos_list,deviceid_list;
dummy=PVSSDBConnexion(dbname,login,passwd,errmess);
//Get all devices of type HCAL_DAC
dummy=PVSSGetDeviceNamesPerType("HCAL_DAC",devicename_list,
deviceid_list);
if(dummy==0)
{
t1=getCurrentTime();
for(i=1;i<=dynlen(devicename_list);i++);

Chapter 10 Validation of the CIC_DB_lib

 240

{
devicename_ch=devicename_list[i];
 if(i==1)
 {
 //Get the connectivity between a given HCAL_DAC and channels
 dummy=PVSSGetDetailedConnBetweenDeviceDevType(devicename_ch,"HC
AL_CHANNEL",1,nfrom_list, pfrom_list, pwayfrom_list, nto_list,
pto_list, pwayto_list, pid_list,lkpos_list, lkinfo_list,1,0,
errmess);
 }
 else
 {
 if(i==dynlen(devicename_list))

 dummy=PVSSGetDetailedConnBetweenDeviceDevType(devicename_ch,"HC
AL_CHANNEL",1,nfrom_list, pfrom_list, pwayfrom_list, nto_list,
pto_list, pwayto_list, pid_list,lkpos_list, lkinfo_list,0,1,
errmess);
 else
 dummy=PVSSGetDetailedConnBetweenDeviceDevType(devicename_ch,"HC
AL_CHANNEL",1,nfrom_list, pfrom_list, pwayfrom_list, nto_list,
pto_list, pwayto_list, pid_list,lkpos_list, lkinfo_list,1,0,
errmess);
 }
}
}

10.2.3 Verification of the execution time requirement

This script has been executed on a Windows machine and on a Linux machine. It
returns the detailed paths between each DAC and a CHANNEL. The Linux and
Microsoft Windows Server 2003 machines have similar characteristics which are Intel
Xeon 2.8 GHz and 2 GB of memory.

Try Execution time
(s) C code
Windows

Execution time
(s) C code
Linux

Execution
time (s)
PVSS code
Windows

Execution
time (s) PVSS
code
Linux

1st try 5.29/6.02 4.87/5.38 6.62 6.35
2nd try 4.45/5.18 4.45/4.96 7.52 5.29
3rd try 4.44/5.19 4.32/4.83 6.17 5.33
4th try 4.44/5.17 4.30 /4.81 6.58 5.10
5th try 4.5/5.23 4.38/4.81 6.12 5.07
Avg 4.62/5.36 4.46/4.95 6.60 5.42

Table 27. Execution time of the script.

In Linux, the C code is executed faster than in Windows (a few ms faster).

It is because PVSS is faster on Linux. In both cases, the first call to
GetDetailedConnBetweenDeviceDevType consumes 90% of the execution time in
Linux and 86.2% in Windows. This is because the first call loads the connectivity
table of HCAL in memory (roughly 14,000 links). In the query, there is a union
statement to revert bidirectional links. And the select query itself involves 3 joins
(FUNCTIONAL_DEVICES, CONNECTIVITY and PORT_PROPERTIES

Chapter 10 Validation of the CIC_DB_lib

 241

tables). The other calls do not perform this operation as the connectivity table (of the
HCAL is already loaded into memory).

So it depends on two factors, the load on the database and the load on the network.
The database (Oracle 10g) is a central one accessed by hundreds of users which can
run heavy processes. The load on the database is already quite heavy. The result of the
tests was more or less the same (the worst result I got was 20 sec which is still less
than 100 sec). However it is important to note that the CIC DB will be installed in the
pit and accessed only by the LHCb group.

The PVSS script is also executed faster in Linux than in Windows.

However the requirement is satisfied with the current performance (it is far beyond
the 100 sec limit). Thus the functions which get the path between two modules and
between a module and a type of module could be validated.

10.3 Inserting and querying the VELO connectivity

In Chapter 2, in section 2.5.2.2, a slice of the VELO connectivity from a hybrid to a
TELL1 board has been presented. Each hybrid has the same connectivity schema. A
hybrid is connected to four short kaptons (similar to cables). A short kapton is
connected to a long kapton which is connected to a port of the feedthrough flange
(similar to a patch panel). A port of this device is connected to a port of a repeater
board via interconnects (also like cables). This repeater is connected to one TELL1
board, to a control board and a temperature board. A control board drives 6 hybrids
and a temperature board, 16.

10.3.1 Using the connectivity for debugging purposes

The VELO group wants to save the connectivity for debugging and management
purposes. If the long kapton VELO_LGKAPTON_00 (for instance) fails, they want to
know all the devices affected by it.

Unlike other subdetectors, they want to know which beetles (silicon chips located on
the hybrid) are associated to a given driver mezzanine (which sits on a repeater
board).

So there is a need to describe the internal connectivity of the hybrid and the repeater
boards as explained in Chapter 2. The internal connectivity of the feedthrough flange
has also been stored as mentioned in Chapter 2.

10.3.2 Inserting the macroscopic and microscopic connectivity

The connectivity of the VELO will be inserted into two steps. The first step is to
insert the macroscopic connectivity from the hybrid to the repeater board. The same
functions have been used as for the HCAL.

The second step is to insert the internal connectivity of boards (hybrids, repeater
boards and feedthrough flanges). The order of inserting the microscopic connectivity
is similar to the macroscopic one. The only difference is there is no need to insert the
ports of a microscopic device. The Python code (written by the VELO group based on
my advices) below shows an example how to insert the 4 driver mezzanine cards of
the repeater boards. It also shows how to insert the micro links of these 4 driver
mezzanine cards.

Chapter 10 Validation of the CIC_DB_lib

 242

#microscopic devices making up one 'slice' of the VELO

#DRIVER_MEZZANINE (inserting the 4 driver mezzanine cards of the
#repeater board)
cfDB.InsertMultipleBoardCpnts('VELO_DRIVER_MEZZANINE_0','VELO_DRIVER_
MEZZANINE',1,'VELO_REPEATER_0','4TVLAURPTA0010','','rshade','0_TOP_LE
FT_0_J3','',1,0)
cfDB.InsertMultipleBoardCpnts('VELO_DRIVER_MEZZANINE_1','VELO_DRIVER_
MEZZANINE',1,'VELO_REPEATER_0','4TVLAURPTA0011','','rshade','0_TOP_LE
FT_0_J5','',0,0)
cfDB.InsertMultipleBoardCpnts('VELO_DRIVER_MEZZANINE_2','VELO_DRIVER_
MEZZANINE',1,'VELO_REPEATER_0','4TVLAURPTA0012','','rshade','0_TOP_LE
FT_0_J7','',0,0)
cfDB.InsertMultipleBoardCpnts('VELO_DRIVER_MEZZANINE_3','VELO_DRIVER_
MEZZANINE',1,'VELO_REPEATER_0','4TVLAURPTA0013','','rshade','0_TOP_LE
FT_0_J9','',0,1)

#Get the deviceid of VELO_REPEATER_TEST, a macroscopic component
devid=cfDB.GetDeviceID_devicename("VELO_REPEATER_0");

#Get the portid which corresponds to (deviceid,port_nbr,
#port_type,port_way) There is a bijection between portid and these
#parameters

#From REPEATER input to MEZZANINE (insert the micro links between
#repeater input and mezzanine)
portid=cfDB.GetPortID_portinfo(devid,"0","data",1);
cfDB.InsertMultipleMicroLinks('motherboard','VELO_DRIVER_MEZZANINE_0'
,portid,0,'mixed_data',0,1,0)
portid=cfDB.GetPortID_portinfo(devid,"1","data",1);
cfDB.InsertMultipleMicroLinks('motherboard','VELO_DRIVER_MEZZANINE_1'
,portid,0,'mixed_data',0,0,0)
portid=cfDB.GetPortID_portinfo(devid,"2","data",1);
cfDB.InsertMultipleMicroLinks('motherboard','VELO_DRIVER_MEZZANINE_2'
,portid,0,'mixed_data',0,0,0)
portid=cfDB.GetPortID_portinfo(devid,"3","data",1);
cfDB.InsertMultipleMicroLinks('motherboard','VELO_DRIVER_MEZZANINE_3'
,portid,0,'mixed_data',0,0,1)

#From MEZZANINE to REPEATER output (insert the micro links between #
#mezzanine and output repeater)

portid=cfDB.GetPortID_portinfo(devid,"0","data",2);
cfDB.InsertMultipleMicroLinks('VELO_DRIVER_MEZZANINE_0','motherboard'
,0,portid,'mixed_data',0,1,0)
portid=cfDB.GetPortID_portinfo(devid,"1","data",2);
cfDB.InsertMultipleMicroLinks('VELO_DRIVER_MEZZANINE_1','motherboard'
,0,portid,'mixed_data',0,0,0)
portid=cfDB.GetPortID_portinfo(devid,"2","data",2);
cfDB.InsertMultipleMicroLinks('VELO_DRIVER_MEZZANINE_2','motherboard'
,0,portid,'mixed_data',0,0,0)
portid=cfDB.GetPortID_portinfo(devid,"3","data",2);
cfDB.InsertMultipleMicroLinks('VELO_DRIVER_MEZZANINE_3','motherboard'
,0,portid,'mixed_data',0,0,1).

This python code below shows how to insert the internal connectivity of the
feedthrough flanfge.

#FEEDTHROUGH_FLANGE(insert the internal connectivity of the
#feedthroughflange)

Chapter 10 Validation of the CIC_DB_lib

 243

for i in range (1,20):
 devid =
cfDB.GetDeviceID_devicename("VELO_FEEDTHROUGH_FLANGE_0");
 portid1 = cfDB.GetPortID_portinfo(devid,"%s" % i,"data",1);
 portid2 = cfDB.GetPortID_portinfo(devid,"%s" % i,"data",2);
 cfDB.InsertMultipleMicroLinks('motherboard','motherboard',porti
d1,portid2,'mixed_data',0,1,1)

10.3.3 Getting the connectivity between VELO devices

The same set of functions is used to query paths between devices as in the HCAL
such as GetDetailedConnectivityBetweenDevices which returns the detailed
paths between 2 devices.

To get the 4 possible paths (and not 16) between a hybrid and a repeater board, the
algorithm to get the paths (the same as used in the HCAL but the input parameters are
different) checks if the node to be added in the current path has an internal
connectivity. If yes, it checks if a signal arriving at a given input can go out from the
given output using CheckInternalConnectivity. This function returns 0 (for OK)
and -1 for (not OK) given two portids (input and output of the same device). For
instance, the input port 1 of the feedthrough flange is not compatible with the outport
2, the function returns -1.

If not, it considers any combination of (input, output).

The VELO connectivity allows testing the functions related to microscopic devices
and connectivity.

10.4 Simulation of device history

10.4.1 Introduction

The real inventory information has not been inserted into the CIC DB so far, since the
history of a device begins with the start of the LHC.

However in CIC_DB_lib, there is a set of functions which enable to:

• Update the status of a hardware device or a functional device;

• Get the history of a hardware or functional device, filtered by date;

• Get the current status of a hardware or functional device;

• Get all the functional or hardware devices which are in a given status filtered
by subsystem.

These functions are included in the PVSS binding but not in Python as these functions
should be used from PVSS. It is part of the hardware monitoring.

The date format is the same one used in all the functions and is equal to
YY/MM/DD/HH24/MI/SS.

10.4.2 Test patterns

Each function related to inventory information has been tested individually using the
use cases defined in Chapter 4, section 4.3.4.

The following tests have been performed:

Chapter 10 Validation of the CIC_DB_lib

 244

• Update the status of a hardware device IN_USE to SPARE with a replacement
and with no replacement;

• Update the status of a hardware device IN_USE to TEST with a replacement
and with no replacement;

• Update the status of a hardware device EXT_USE to IN_USE;

• Update the status of a hardware device IN_REPAIR to DESTROYED;
Also some impossible patterns have been tested to verify that no update was done:

• Update the status of hardware device DESTROYED to SPARE;

• Update the status of a hardware device IN_USE to SPARE with a replacing
hardware IN_USE;

• Update the status of a hardware device IN_USE to TEST with a test board not
free;

• Update the status of a hardware device EXT_USE to IN_USE, and the
functional device is already IN_USE.

Functions based on select have also been tested.

Example of code:
//Get the status of functional device "TEST_BOARD_1"
res2=GetFunctionalDeviceStatus("TEST_BOARD_1",resultList ,ErrMess);
//Get the status of hw device "CC21PP78"
res2=GetHWDeviceStatus("CC21PP78",resultList , ErrMess);
//Replace the hw device which occupies the functional device
//“ttcrx_1000” with “CC21PP78" and set the status of the replaced
//device to SPARE
res2=ReplaceFunctionalDevice("ttcrx_1000","SPARE","Liverpool_Uni","no
ne","12/55/41/02/05/06","CC22PP78","12/55/41/02/06/06",ErrMess);
//set the status of the hw device which occupies the functional
device //“TELL1_Board_77” to EXT_USE
res2=ReplaceFunctionalDevice
("TELL1_Board_77","EXT_USE","Liverpool_Uni","device in test
","11/08/45/10/02/06","none","none", ErrMess);
//set the status of the hw device which occupies the functional
device //“TELL1_Board_12” to TEST and replace it with “CC21PP78”
res2=SetToTestUseStatus("TELL1_Board_12","none","06/04/10/12/24/25","
CC21PP78","TEST_BOARD_1","06/05/22/12/05/06", ErrMess);
//set the status of the hw device “88XX745P45SS” to IN_USE and it
occupies “TELL1_Board_77”
res2=UpdateHWDeviceStatus("88XX745P45SS","IN_USE","none","getting
back the hw","12/55/41/02/06/06","TELL1_Board_77",ErrMess);
// set the status of hw device “XX3356UGD” to IN_USE and occupies the
//functional device “ttcrx_1000”. This one does not work as
“ttcrx_1000” //is already IN_USE
res2=UpdateHWDeviceStatus("XX33356UGD","IN_USE","none","getting back
the hw","12/55/41/02/06/06","ttcrx_1000",ErrMess);

res2=GetHistoryOfHWDevice("XX33356UGD",ipaddList,len_array,"none","no
ne",ErrMess);

10.5 Validating the connectivity information

The different functions related to query connectivity information have been tested
through different means.

Chapter 10 Validation of the CIC_DB_lib

 245

• CDBVis uses functions which give neighborhood connectivity of a device
(inputs and outputs) and give all the paths through a device;

• TFC Local control uses functions which return neighborhood connectivity of a
device and which return the output port number given a subsystem;

• The CALO project uses functions which return the detailed connectivity
between a device and a device type or between two devices.

• The VELO project uses functions to insert the internal connectivity of boards.

10.6 Conclusion

In this chapter, we have described different tests which have been performed to verify
and validate the functions of CIC_DB_lib and its two bindings. The tests covered
insertion, update and deletion and connectivity and inventory/history information
retrieval. There were also some simulations of mistyping in the input parameters or
bad behavior of the user as inserting twice a same device, updating the status of a
device which is destroyed, swapping two devices which are of different types. The
main purpose was to predict the robustness of CIC_DB_lib in case of bad usage.

Chapter 10 Validation of the CIC_DB_lib

 246

References

[1] Valgrind, http://valgrind.org/

Chapter 10 Validation of the CIC_DB_lib

 247

Chapter 11 Other examples where the CIC DB can be implemented

 248

Chapter 11 Other examples where the CIC DB can be
implemented

This chapter describes other areas than LHCb where databases are used to configure
experiments. The first section is devoted to configuring telescopes. There are some
common needs which can be modeled with the CIC DB. The second section presents
another HEP experiment, ATLAS in which an Oracle relational database has been
used to configure the MUON detector. We show that the CIC DB design and
implementation could have been applied in this context.

11.1 Configuring telescopes

Large telescopes such the ones used in the VLT (Very Large Telescope) [1] or ALMA
[2] (Atacama Large Millimeter Array) project need to be configured.

In both projects, they have implemented their own DBMS to configure their
equipment. The next subsections aim at giving the outlines of their software
architecture.

11.1.1 VLT project

The VLT is composed of an array of four identical main telescopes. Each of them has
a mirror of 8 m diameter. They can be used independently or as a single instrument.
The first telescope has been installed in 1996. The control software for the VLT is a
distributed system of 120-150 coordinating workstations and microprocessors based
on VME systems (Local Control Units, LCUs). The LCUs control the mechanical,
electrical and optical components of the VLT in real time. The synchronization of the
computing units is either based on hardware (faster as it does not go through all the
OSI layers) or on software (via LANs).

The VLT architecture includes an online database which provides real-time data
capabilities. This database is a home-made product. The main reason is at that time,
the performance of writing into a database was too low. So this database can be
viewed as a set of files.

Each LCU loads the information it needs to configure and control its equipment from
a central database. Each local database has a hierarchical structure which reflects the
physical objects that constitute the telescope system (instruments, telescope control,
components …). It also describes how these components are logically contained, in
term of “part-of”. So the On-Line database contains information about component
configuration and also how components are nested (hierarchical relationship). There is
no information related to the connectivity as in their case, the connectivity is trivial.
Also for this project, they did not plan to store history information about components.

The database implementation is based on Object Oriented terminology. They have a
lot of classes such as motors, encoders as shown in Figure 124. Each class has many
instances.

They have implemented tools to interact with the database. Templates are widely used
to describe the different modules. They have introduced a simple description language
for the database structure to handle the definition of instances, to define a new class,
to take proper default values if missing.

Chapter 11 Other examples where the CIC DB can be implemented

 249

A telescope description comprises 6400 instances, i.e. 6400 entries in the database.

Figure 124. Example of relations between classes.

11.1.2 ALMA project

The ALMA telescope consists of 64 12m diameter antennas which operate in the
millimetre and sub millimetre wavelength.

They have developed a framework called ACS (ALMA Computing Software) based
on CORBA. This framework has been embedded in languages such as JAVA and
Python. The objective of this framework is to provide a set of tools to build and
monitor the system.

ALMA is composed of a complex collection of hardware and software. They need to
maintain information about the current configuration in use, the previous
configuration to allow reverting back in case of problems and the next planned
configuration (which is in development).

The telescope configuration changes with time, for instance if a device fails or if an
antenna or weather station is taken offline. According to the cause of change, it can
imply a change in the hardware or/and software configuration.

The detailed telescope configuration is tracked in the telescope configuration
database. This database is integrated in the control system. At start up, the control
system uses the Telescope configuration database to know what devices should be
online.

When an antenna is placed online, it has to declare itself by giving the serial numbers
of its parts.

This information is then compared with the content of the Telescope Configuration
database. If there is mismatch of the information, the database can be updated by
inserting this new information automatically or it can cause an error in the
initialization of the antenna.

So the Telescope Configuration database corresponds to a snapshot of the telescope at
a given time, in fact it changes whenever there is change in the telescope
configuration.

Chapter 11 Other examples where the CIC DB can be implemented

 250

Unlike the previous project, history information is stored since a device failure causes
a change in the configuration.

They use an Oracle relational database to store the information and Java database
functions to query information. They also use XML packages provided by Oracle
(XPath and XQuery) to describe their devices and their software. Figure 125 [3]
shows in detail how the database schema looks like. There are 3 main concepts,

• hardware devices (in light yellow) which are identified by a serial number.
Properties with their values are also described here;

• configuration information which describes the previous, the current, and the next
configuration used and to be used, and also all the devices which are part of this
configuration (represented in green);

• software configuration represented in blue.

Figure 125. ALMA control system architecture.

On the top of the red dashed line, elements vary slowly with time (hours, days,
weeks). On the bottom of the red dashed line, elements vary rapidly with time
(minutes, seconds).

Red arrows represent the interactions between the three concepts. The Named
Configuration (in dark yellow) consists of hardware devices, configuration and
software information.

The red arrows on the bottom specify which parameters are required by the three
databases whose data varies quickly with time.

Chapter 11 Other examples where the CIC DB can be implemented

 251

11.1.3 Use of the CIC DB in the VLT or ALMA project

Using documents on the VLT and ALMA projects and discussions with a person
involved in these two projects, part of the CIC DB can be implemented in the ALMA
project (the VLT project is old). The connectivity information in this context is not
needed as there is only one system with few links. The configuration and history
design can be applied in their context with some changes. They do not have the
concept of hardware/functional duality as they only use serial numbers to identify the
equipment. So the configuration is related to the hardware identifier and not to the
functional device. History information (in ALMA project) consists of only tracking
hardware information.

To make it compatible with the schema of the CIC DB, the functional device can be
set equal to the hardware serial number.

11.2 Application of the model to the thin Gas Chamber of
ATLAS

11.2.1 Description of the problem

The ATLAS MUON group has developed the Thin Gas Chambers database [4]. Thin
gas chambers (TGCs) are used by the MUON trigger system in the forward region of
the ATLAS experiment. They have designed a relational database based on Oracle
Technology to configure their system.

The database will contain configuration parameters of equipment as in the CIC DB. It
will also describe the structure of the system in terms of hierarchies. Using the
information stored in this database, it should be possible to retrieve from which
chamber, a given electronic module gets its signal and to which trigger coincidences it
contributes. In their case, they have several different hierarchies (DAQ, Trigger, etc.).
In parallel, they want to navigate from one hierarchy to another one.

Chapter 11 Other examples where the CIC DB can be implemented

 252

Figure 126. Structure of the thin gas chambers.

Their table design is different from the CIC DB table schema. I would like to show
that the schema of the CIC DB can also be applied in the context of the ATLAS thin
gas chambers.

11.2.2 ATLAS database design

Figure 127 shows how ATLAS thin gas chamber database has been designed.

• DEVICE table contains the general detector elements such as ASIC, CHAMBER.
Each of them is uniquely identified by oid.

• ARGUMENT stores parameters related to the previous elements via
ARGUMENT.oid. ARGUMENT.dev_id is a foreign key to DEVICE.oid. The
value of this parameter is not stored in this table. This table defines the structure
of a DEVICE.

• PRODUCT contains instances of elements in DEVICE table, uniquely identified
by PRODUCT.oid. PRODUCT.devid is a foreign key to DEVICE.oid.

• CONFDB contains the values of a particular configuration identified by
CONFDB.conf_id. CONFDB.oid is a foreign key to ARGUMENT.oid and
CONFDB.prod_id is a foreign key PRODUCT.oid.

• CONFIGURATION contains all the generic information of a configuration such
as name, date of creation, etc.

• HIERARCHY contains the link between devices. There is also a field called
hierarchy which corresponds to the type of the hierarchy. It is not represented in

Chapter 11 Other examples where the CIC DB can be implemented

 253

Figure 127. With this table, they also model connectivity between devices and not
only hierarchy.

Figure 127. Design of ATLAS database.

11.2.3 Use of the CIC DB in ATLAS MUON Chamber database

The CIC DB table design is slightly different, especially regarding recipes. In the
table schema for the recipes presented in Chapter 5, there is nothing similar to the
ARGUMENT table, i.e. there is no table which contains the structure of a device type.
They just save the attributes with its values part of the recipe. The Table 28 shows the
mapping between the ATLAS MUON Gas Chamber database schema and the CIC
DB schema. So for instance, the information in the ARGUMENT table can be
retrieved using RECIPE_DATA(id, propname, propid).

Moreover in JCOP design, a recipe is linked to a HIERARCHY which is not the case
in the ATLAS table design.

Regarding the HIERARCHY table in ATLAS design, the CONNECTIVITY table can
store links between devices. In my case, the granularity is even deeper as I store it at
the port level. So in their case, they just create one port per device. They can put the
hierarchy type in the link type or even in the system_name.

Also for hierarchy data, they can store it in the HIERARCHY table part of JCOP or
also in CONNECTIVITY table as follows. They create if needed a port for the
connectivity and as many as needed for the hierarchy. In the first case, they set
port_type to “connectivity” and in the second case they set port_type to “hierarchy”.

However it is important to note that LHCb table design can be applied to the ATLAS
database design but the opposite is not true as they do not have a port concept.

Chapter 11 Other examples where the CIC DB can be implemented

 254

Table in ATLAS Design Tables in the CIC DB
DEVICE FUNCTIONAL_DEVICE_TYPES
CONFDB RECIPE_DATA(propid, propvalue)
ARGUMENT RECIPE_DATA(id, propname, propid)
PRODUCT FUNCTIONAL_DEVICES
HIERARCHY ITEMS, HIERARCHIES,

CONNECTIVITY
CONFIGURATION RECIPES, RECIPE_TAGS

Table 28. Applying the CIC DB schema to the ATLAS Thin gas chamber.

Chapter 11 Other examples where the CIC DB can be implemented

 255

References

[1] VLT project,
 http://www.eso.org/projects/vlt/sw-dev/wwwdoc/APR2004/dockit.html

[2] ALMA project,
http://www.eso.org/projects/alma/develop/acs/OnlineDocs/ConfigurationDatabase.pdf

[3] A Redesign for the ALMA Monitoring Database, Allen Farris, April 2006,
http://almasw.hq.eso.org/almasw/pub/CONTROL/MonitorDatabase/RedesignV
2.ppt

[4] Y.Benhammou, S.Bressler, E.Etzion, D.Lellouch, L.Levinson, S.Tarem, The Thin
Gas Chamber Database preparations for ATLAS. In the Proceedings of 14th
Conference on real time (RT 2005) Stockholm, Sweden, June 4-10, 2005.

Conclusion

 256

Conclusion

Telle est la vie
Tomber sept fois

Et se relever huit.
Poème populaire japonais.

This thesis describes the methodology applied to build an autonomic LHCb ECS with a focus
on the experiment configuration. In other words, it describes how the ECS can configure the
LHCb experiment by a single-click.

There are often changes in the technology used to build the LHCb experiment. This thesis has
described the LHCb experiment as expected to be built in August, 2006.

Due to the complexity introduced by the scale of the experiment with several hundred
thousand of electronics modules to configure in different ways, an autonomic architecture was
required by the Experiment Control System. The software architecture which has been
implemented to handle the configuration is a 3-Tier architecture. It consists of a database
layer (CIC DB and PL/SQL applications), an object layer (Two Perl scripts, CIC_DB_lib and
its two bindings and the PVSS library for recipes) and the GUI layer composed of CDBVis
and PVSS panels. The object layer has been developed in such way that autonomics tools for
the configuration of the experiment can be built on top of it.

The CIC DB is a relational database, implemented using Oracle technology. It contains the
different recipes of devices, the connectivity between devices for the whole experiment and
inventory/history information of a device. To build the schema, we have first identified the
different groups of users of the CIC DB. For each group, their needs in terms of configuration,
inventory/history and connectivity have been defined.

Based on these use cases, we have proposed a generic model for connectivity and
inventory/history. The main advantage of a generic schema is an easier management of the
database. Despite the complex environment (many devices with different technologies and
different types of topologies), the table schema is rather simple. It is readable and easy to
extend. It can also be used by other experiments. ITER have expressed an interest in our
design. The inventory/history use case consists of providing information about the history of a
device (its different statuses over years) and also the current statuses of devices (spare
devices, broken devices, devices in use, etc.). It introduces the concept of duality between
hardware and functional devices. In other words, a functional device can be viewed as an
entity which fulfills specific tasks whereas a hardware device is the physical equipment. A
functional device is occupied by a hardware device. Both hardware and functional devices
have a status and a history. The possible statuses of a hardware device are different from the
functional device. A hardware device can have status “DESTROYED” whereas for functional
devices this status does not make sense. Diagrams which represent the possible transitions
from one status to another one have been drawn. For each transition, we have specified the
different steps which need to be performed to make the change of status coherent and
consistent. All these operations are done automatically.

The association between a device and a subsystem is an N:M relationship (a device can be
part of N subsystems and a subsystem can contain M devices). For performance reasons, we
have modeled the standard N:M relationship with a new representation based on prime
numbers. To model an N:M relationship in the standard way, a new table must be created
containing the relations. The method presented in this thesis avoids creating a new table by
attributing a prime number as a unique identifier to the entity with the least number of distinct

Conclusion

 257

values and adding an attribute (integer) to the other one. This attribute corresponds to the
product of prime numbers of the possible associations. The algorithm works because the
decomposition of a number in terms of its primes is unique. This application can be applied to
any other N:M relationship such as STUDENT/COURSES.

To allow for easier network management, we have developed routingtable_pck, a PL/SQL
package which generates routing and destination tables using connectivity information. The
concepts of host and intermediate nodes have been defined. The main idea of the algorithm is
to search for paths with some properties depending on whether it is used for a destination or a
routing table. A path is a sequence of links. A routing path is a special path which starts with
an intermediate node (switch) and ends at a host node (PCs). A destination path is a special
path which ends at a host node (PCs). The algorithm has been successfully tested for different
types of topologies. It does not generate looped paths (cycles). The routingtable_pck can be
used in other fields which require the configuration of networks such as private companies or
electrical facilities. This algorithm is used to generate the DHCP config file automatically, by
creating the destination table of the given DHCP server. The formatting into specific terms
used in the DHCP protocol is done with XML and XSLT. The method to create the DHCP
config file is also generic enough to be applied in any other industrial context as it can be
adapted for any given connectivity by the use of enabling/disabling a hardware equipment
which needs an IP address.

Based on the same algorithm, we have extended it to get detailed paths between devices. It is
used to compute the values of configurable device parameters or to check that the devices are
properly connected.

Other PL/SQL codes have been implemented to avoid embedding long SQL statements.
The CIC DB and PL/SQL applications have been implemented to allow flexibility and
consistency. They constitute an essential aspect in implementing an autonomics architecture.
A change in the content of the CIC DB triggers updates which are essential to keep the
information in the CIC DB consistent.
The other aspect was to build the object layer also according to the autonomics principles.
CIC_DB_lib is a C-library which provides a set of functions to interact with the CIC DB. It
has been built using an API which lists the different queries. With CIC_DB_lib, the user does
not have to type any SQL queries or to have any knowledge of the CIC DB structure. The
CIC_DB_lib has two bindings Python and PVSS built using respectively BOOST and GEH.
The CIC_DB_lib provides cache mechanism which allows bulk collect insertion for
performance reasons and automatic updates when possible. CIC_DB_lib and its two
extensions have been tested to verify that the functions were operational and free of bugs (it
includes memory leaks). Tests have been done to check that the functions were behaving
correctly in case of a human error such as mistyping or inserting inconsistent information. The
functions also try to minimize the human intervention by anticipating the reaction of the
system in case this type of input is given. It was very useful for the inventory/history
information which requires updating the data in a coherent manner.

Besides CIC_DB_lib, two Perl scripts have been built to automate the creation of the DHCP
and DNS config files. It avoids mapping thousands of IP addresses with their corresponding
host names and to make the association IP, MAC address and filename for a host name
manually.

A PVSS library for recipes has been implemented by the CERN PVSS Support group. Here
also, autonomics features have been applied by providing recipe template for electronics
modules which are either commercial or widely used at the LHC. It avoids having errors in
defining the configuration.

Conclusion

 258

The object layer has also been built to permit to develop autonomics by reducing the human
intervention.

On top of the object layer, there is the GUI layer which displays the information to the users.
PVSS panels have been implemented using the PVSS extension of CIC_DB_lib and the PVSS
library for recipes. It allows configuring electronics modules, retrieving a certain recipe and
applying it to the equipment. There is also CDBVis, a Python tool which allows users to
navigate through the CIC DB. It is based on the Python extension of CIC_DB_lib. It also
permits to insert the connectivity of a system. CDBVis is a very useful tool as users can check
that the connectivity has been properly inserted. In conjunction with the ECS, it can be used
for fault detection. Here also the user interfaces have been designed according to the
autonomics principles.
So far the different PVSS panels and the CDBVis have been built to be semi-autonomic. The
running mode and the partition have still to be selected by the operator shift. The different
recipes of devices have to be defined and the topology of a system has to be inserted by the
user.
This project is used and will continue to be used in LHCb. In the future, table partitioning
may be required to keep a good performance depending on the amount of data inserted.
In the future, the table schema can be extended with new parameters as the detector can
evolve with years. More precise performance studies on the C-library implementation can be
done. One possible extension is the history table. One can implement a table which contains
the different mistakes which usually happen and associating them with a priority. Then a set
of actions can be taken by the FSM according to the given priority. It also contributes in
improving the autonomics architecture of the ECS, especially by improving its self-
adaptability.

New features should be added to the CDBVis tool such as viewing the microscopic tool and
also to integrate within PVSS. In other words, it should be possible to call CDBVis from
PVSS. A filter should be proposed to the user when he views all the paths through a device.
Some performance studies can be done to improve.

The ECS can integrate some more autonomics tools in the future, once the detector fully
operational. For instance, before starting an experiment, a PVSS panel based on DIM and on
the CIC_DB_lib to verify that the connectivity stored in the CIC_DB is complete, i.e. there is
no link missing. There is a need to implement some protocols which enable to get the
information of a board such as it serial number, MAC and IP addresses and also to which
devices it is connected to. It can be very useful to check that the connectivity is complete.

Another subject possibility is to study the use of parallelism. In the current implementation,
the CIC DB will be installed in an Oracle RAC (with 3 nodes). The controls PCs (less than
one hundred) will load the required information from the CIC DB.

One can think to have smaller DB servers (slaves) which contain all the information
(configuration, history/inventory, connectivity) related to a subsystem. They are replicated
using Oracle Replication from the CIC DB master. The controls PCs will load the information
from their respective DB slave server. Performance will be surely improved as queries will be
performed against smaller tables and concurrent queries will be reduced.

Another possible extension of this project is to apply it in the context of tsunamis, earthquakes
and the Grid. One can imagine a distributed database which contains all the characteristics of
tsunamis, earthquakes, and any other natural catastrophes by regions of the world. It is similar
to configuration information. It can also contain history information of a region, where the
different natural damages occurred. It should also contain information on which towns or
other regions can be affected if a given region is hit by a given catastrophe. This connectivity

Conclusion

 259

information could be used to automatically send alerts to regions which can be affected if this
type of catastrophe happens in this part of the world.

Appendices

 260

Appendices

Appendices

 261

Appendix A Proof of the equivalence of a routing path

A path P of length J is a routing path of length J

A path P of length J is a routing path of length J P is
a sequence of J+1 nodes which are all intermediate nodes (J
nodes) except the terminal one which is a host node.
So P is a routing path of length J P is a sequence of J-1
links between intermediate nodes and one link intermediate host
nodes.
As the link weight between two intermediate nodes is equal
to 0 and the link weight between an intermediate node and a
host node is equal to 1, we have:
P is a routing path of length J

As all the link weights are greater or equal than 0, we have:

and we also have

Hence a path P of length J is a routing path of length J

Appendices

 262

Appendix B The interface of the PL/SQL package, routingtable_pck

/**
******/
// Author: L.Abadie
// version: v5.2
// PL/SQL package to generate and update routing and destination tables //
// automatically
/**
******/

create or replace package routingtable_pck AUTHID CURRENT_USER is

-- List of functions accessible to the users ---------------------
-- Function to call to generate the routingtable with the deviceid
 function createRT_all(devname number,path_necessary number default
0,round_trip number default 10,recreate_table number default 1) return
number;

-- Function to call to generate the routingtable with the devicename
function createRT_all_devname(devname varchar2,path_necessary number
default 0,round_trip number default 10,recreate_tab number default 1)
return number;

-- Function to call to generate the destinationtable with the devicename
 function createTD_all_devname(devname varchar2,path_necessary number
default 0,round_trip number default 10,recreate_tab number default 1)
return number;

-- Function to call to generate the destinationtable with the devicename
 function createTD_all(devname number,path_necessary number default
0,round_trip number default 10,recreate_tab number default 1) return
number;

-- List of internal functions not accessible by users --------------
-- create the AGGREGATED_LINKS and LINKPAIRS tables
 function createNodeLink_tab(sysIDlist number,recreate_table
number,bidi_needed number default 0) return number;

-- find all the valid routing/destination paths starting from the given ---
-- device (should be an intermediate node)

function createPathTab(devfrom number,rt_needed number, round_trip
number default 10) return number;

-- find all the valid destination paths starting from the given device -- -
-- (should a host node)
 function CreatePathTab_Host(devfrom number,rt_needed number,
round_trip number default 10) return number;

-- Back to the port level and select the shortest path per destination and
-- store paths in a temporary table, ROUTINGPATHUSED=1 if shortest path
 function createRoutingTable_SP(devfrom number) return number ;

-- Back to the port level and store paths in a temporary table
 function createTabDestin(devfrom number) return number;

-- Insert the routing or destination paths from the temporary table to the
ROUTINGTABLE or DESTINATION table

Appendices

 263

 function Insert_firsttab(devname number,rt_needed
number,path_necessary number) return number;

-- Update the validity path further an update of a device, port or link --
-- status

function UpdatePathUsed(systemname number) return number;

-- Create the AGGREGATED LINKs for the microscopic view
 procedure createMicroNodeLink_tab(motherboardidList in out number
,recreate_table number,rescode in out number, cpntid in out number,cpntname
varchar2 default 'none');
-- Find all the microscopic paths for a component
 function createMicroPathTab(devfrom number, round_trip number default
10) return number;

-- Find all the microscopic paths for an interface of the motherboard
 function CreateMicroPathTab_Host(devfrom_bis number, round_trip
number default 10) return number;

-- Select and Insert the microscopic paths starting from a given interface
-- to a component type
 function InsertIntoMicroPathCnptType(portid_from number,cpnttype
varchar2,cpnttype_given number) return number;

-- Select and Insert the microscopic paths starting from a given interface
-- to another interface
 function InsertIntoMicroPathFromPortID(portid_from number,portid
number, cpntname varchar2) return number;

-- Select and Insert the microscopic paths starting from a component to
-- an interface
 function InsertIntoMicroPathUsingID(cpntid number,portid number)
return number;

-- Delete the paths if links part of a path have been deleted
 function DeleteLinksInPaths(pfromid number,ptoid number) return
number;

-- check that the tables related to paths are update to date
 function checkUpdatePathTable(daq_sysid in number, tfc_sysid number)
return number ;

-- if not regenerate all the routing and destination tables
 function generKeyDTab(systemname in number) return number;

-- check that the tables related to paths are update to date and complete,
-- i.e. no routing or destination tables missing
 function CheckPathTabCompleteAndUpdate(systemname in number) return
varchar2 ;

end routingtable_pck;
/

Appendices

 264

Appendix C Perl script to generate the dhcp config file

/**
******/
// Author: L.Abadie
// version: v1.2
// Perl script to generate the dhcp config file
// Replace XXX with the correct values
/**
******/
#!/usr/local/bin/perl

use DBI;
use XML::XSLT;
$user=’XXXXX’;
$passwd='XXXXXXX';
$dbh = DBI-> connect("dbi:Oracle:XXXXX","$user", "$passwd",{AutoCommit =>
0}) or die "Couldn't connect to database: " . DBI-> errstr," \n";

$dbh->{LongReadLen} = 512 * 1024;
$xmlfile_options="dhcp_options.xml";
$xmlfile = "dhcp_file.xml";
$xslfile = "style-test1.xsl";

$daq_sysID=5;
$dhcpconf="dhcpd.conf";
$dhcp_name=$ARGV[0];
print "dhcp_name= $dhcp_name";
if($dhcp_name eq "none")
{
 getAllHostNodes($xmlfile,$xmlfile_options);
 $dbh->disconnect;
 my $parser = XML::XSLT->new ($xslfile);
 $parser->transform($xmlfile);
 open(FILEHANDLE,">$dhcpconf")|| die("can't open datafile: $!");

 @output_file= $parser->toString;
 my $array_element ;
 foreach $array_element(@output_file)
 {
 print FILEHANDLE $array_element." \n";
 }
 close(FILEHANDLE);
}
else
{
 $rescode_pl=0;
 $destin_temp=0;
 @list_tabname=CheckHostDestinationExistence($dhcp_name);
 $dhcp_devid=$list_tabname[1];

 if($list_tabname[0]==1)
 {
 $destin_temp=1;
 $rescode_pl=CreateLogicalView($daq_sysID);
 $rescode_pl=CreateDestinationTable($dhcp_devid);
 }

Appendices

 265

 if($rescode_pl==0)
 {

 #$SQLQuery =FormatQuery($destin_temp);

 getHostNodes($xmlfile,$dhcp_devid,$destin_temp,$xmlfile_options);
 $dbh->disconnect;
 my $parser = XML::XSLT->new ($xslfile);
 $parser->transform($xmlfile);
 open(FILEHANDLE,">$dhcpconf")|| die("can't open datafile: $!");

 @output_file= $parser->toString;
 my $array_element ;
 foreach $array_element(@output_file)
 {
 print FILEHANDLE $array_element." \n";
 }
 close(FILEHANDLE);
 #open(FILEHANDLE,">$xmlfile")|| die("can't open datafile: $!");

 #close(FILEHANDLE);
 }
}
###################################subroutine to create the logical
view###################3
sub CreateLogicalView{
 my $subsystemID=$_[0];
 my $rescode=-1;
 my $plsql_query="begin
:rescode:=routingtable_pck.createnodelink_tab(:sysID,1,0); end;";
 my $csr=$dbh->prepare($plsql_query);
 $csr->bind_param_inout(":sysID",\$subsystemID,100);
 $csr->bind_param_inout(":rescode", \$rescode, 100);
 $csr->execute();
 return $rescode;

}
###################################Subroutines bodies######################
#sub routine which creates the destination table of the dhcp server name
given... don't forget
sub CreateDestinationTable{
my $rescode=1;
my $dhcpname=$_[0];

$pl_sql_query="begin :rescode:=routingtable_pck.CreatePathTab_Host(:devid,
0); if :rescode=0 then :rescode:=routingtable_pck.createTabDestin(:devid);
end if; end;";
my $csr = $dbh->prepare($pl_sql_query);

 # The value of $devid is _copied_ here
 $csr->bind_param_inout(":devid",\$dhcpname,100);

 $csr->bind_param_inout(":rescode", \$rescode, 100);

 # The execute will automagically update the value of $is_odd
 $csr->execute();

return $rescode;

Appendices

 266

}
###################################Subroutines bodies######################
#sub routine which returns first if we need to create the destin table to
check dchp server connectivity, then the #deviceid
sub CheckHostDestinationExistence{
my $deviceid;
my $result_temp=0;
my @list_subsystem;
my $createtab_needed=0;

my $SQLquery='select count(pathid) from
lhcb_destinationtable,lhcb_lg_devices where nodeid_start0=deviceid and
devicename=:1 and rownum=1';
my $sth=$dbh->prepare($SQLquery);
$sth->bind_param(1,$_[0]);
$sth->execute;
while(@deviceid_list=$sth->fetchrow_array())
 {
 $result_temp=$deviceid_list[0];
 if($result_temp==0)
 {
 $createtab_needed=1;
 }
 }
push(@list_subsystem,$createtab_needed);
my $SQLquery='select deviceid from lhcb_lg_devices where devicename=:1 ';
my $sth=$dbh->prepare($SQLquery);
$sth->bind_param(1,$_[0]);
$sth->execute;
while(@deviceid_list=$sth->fetchrow_array())
 {
 $deviceid=$deviceid_list[0];
 }
push(@list_subsystem,$deviceid);

return @list_subsystem;
}
#######subroutine which formats the SQL query using XML attributes#########

sub FormatQuery
{
if ($_[0]==0)
{
my $SQLstatement = 'select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(e.ipname,1,instr(e.ipname,\'.\',1
)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_device_booting r, lhcb_hwport_properties s,lhcb_lg_devices g where
t.ipaddress=e.ipaddress and r.deviceid=g.deviceid and t.portid in (select
ptoid1 from lhcb_destinationtable where pathused=1 and NODEID_START0=:1)
and t.port_nbr=s.port_nbr and t.port_type=s.port_type and
t.deviceid=g.deviceid and s.serialnb=g.serialnb union select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(e.ipname,1,instr(e.ipname,\'.\',1
)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_devicetype_booting r,lhcb_hwport_properties s,lhcb_lg_devices g
where t.ipaddress=e.ipaddress and r.devicetypeid=g.devicetypeid and

Appendices

 267

t.portid in (select ptoid1 from lhcb_destinationtable where pathused=1 and
NODEID_START0=:nodeid) and t.port_nbr=s.port_nbr and
t.port_type=s.port_type and t.deviceid=g.deviceid and
s.serialnb=g.serialnb and g.deviceid not in (select deviceid from
lhcb_device_booting)';
}
else
{
my $SQLstatement = 'select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(ipname,1,instr(e.ipname,\'.\',1)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_device_booting r, lhcb_hwport_properties s,lhcb_lg_devices g where
t.ipaddress=e.ipaddress and r.deviceid=g.deviceid and t.portid in (select
ptoid1 from lhcb_destintab_temp where pathused=1 and NODEID_START0=:1) and
t.port_nbr=s.port_nbr and t.port_type=s.port_type and s.deviceid=t.deviceid
and t.deviceid=g.deviceid union select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(ipname,1,instr(e.ipname,\'.\',1)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_devicetype_booting r, lhcb_hwport_properties s,lhcb_lg_devices g
where t.ipaddress=e.ipaddress and r.devicetypeid=g.devicetypeid and
t.portid in (select ptoid1 from lhcb_destintab_temp where pathused=1 and
NODEID_START0=:nodeid) and t.port_nbr=s.port_nbr and
t.port_type=s.port_type and s.deviceid=t.deviceid and t.deviceid=g.deviceid
and g.deviceid not in (select deviceid from lhcb_device_booting)';
}
return $SQLstatement;
}

########### subroutine which prints the results in the xml file
#############
sub getHostNodes {
 my $j=0;
 open(XMLOPTIONS,"$_[3]") || die("can't open datafile: $!");
 @lines=<XMLOPTIONS>;
 close(XMLOPTIONS);
 open(FILEHANDLE,">$_[0]") || die("can't open datafile: $!");
 print FILEHANDLE "<?xml version = '1.0'?> \n";
 print FILEHANDLE "<page> \n";
 foreach $option_dhcp(@lines)
 {
 print FILEHANDLE
"<options><option>$option_dhcp</option></options>\n";
 print "options= $option_dhcp";
 }

my $sth;

if ($_[2]==0)
{
$sth=$dbh->prepare(q{select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(e.ipname,1,instr(e.ipname,'.',1)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_device_booting r, lhcb_hwport_properties s,lhcb_lg_devices g where

Appendices

 268

t.ipaddress=e.ipaddress and r.deviceid=g.deviceid and t.portid in (select
ptoid1 from lhcb_destinationtable where pathused=1 and nodeid_start0=:1)
and t.port_nbr=s.port_nbr and t.port_type=s.port_type and
t.deviceid=g.deviceid and s.serialnb=g.serialnb union all select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(e.ipname,1,instr(e.ipname,'.',1)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_devicetype_booting r,lhcb_hwport_properties s,lhcb_lg_devices g
where t.ipaddress=e.ipaddress and r.devicetypeid=g.devicetypeid and
t.portid in (select ptoid1 from lhcb_destinationtable where pathused=1 and
NODEID_START0=:2) and t.port_nbr=s.port_nbr and t.port_type=s.port_type and
t.deviceid=g.deviceid and s.serialnb=g.serialnb and g.deviceid not in
(select deviceid from lhcb_device_booting) });
}
else
{
$sth=$dbh->prepare(q{select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(ipname,1,instr(e.ipname,'.',1)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_device_booting r, lhcb_hwport_properties s,lhcb_lg_devices g where
t.ipaddress=e.ipaddress and r.deviceid=g.deviceid and t.portid in (select
ptoid1 from lhcb_destintab_temp where pathused=1 and nodeid_start0=:1) and
t.port_nbr=s.port_nbr and t.port_type=s.port_type and s.serialnb=g.serialnb
and t.deviceid=g.deviceid union all select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(e.ipname,1,instr(e.ipname,'.',1)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_devicetype_booting r,lhcb_hwport_properties s,lhcb_lg_devices g
where t.ipaddress=e.ipaddress and r.devicetypeid=g.devicetypeid and
t.portid in (select ptoid1 from lhcb_destintab_temp where pathused=1 and
NODEID_START0=:2) and t.port_nbr=s.port_nbr and t.port_type=s.port_type and
t.deviceid=g.deviceid and s.serialnb=g.serialnb and g.deviceid not in
(select deviceid from lhcb_device_booting) });
}
$sth->bind_param(1,$_[1]);
$sth->bind_param(2,$_[1]);
$sth->execute();

 my $r=0;
 my $i=0;
 my $count_distinct_subnet=0;
 my $count_distinct_subnet1=0;

 my @distinct_subnetID;
 my @distinct_subnetmask;
 my @res_query;
 while(@data=$sth->fetchrow_array())
 {

 my $line_get=$data[0];
 my $subnet_mask=$data[2];
 $SubnetID=GetSubnetID($data[1],$data[2]);

Appendices

 269

 $data[1]=$subnetID;
 $_= $SubnetID;
 $count_distinct_subnet1= $count_distinct_subnet;
 push(@distinct_subnetID, $_) unless ($seen{$_}++);
 $count_distinct_subnet=@distinct_subnetID;
 if($count_distinct_subnet>$count_distinct_subnet1)
 {
 push(@distinct_subnetmask,$data[2]);
 }
 push(@res_query,$line_get."||".$SubnetID);
 }

 foreach(@distinct_subnetID)
 {
 $SubnetID=$distinct_subnetID[$r];
 print FILEHANDLE "<subnet> \n";
 print FILEHANDLE "<subnetID> ".$SubnetID." </subnetID> \n";
 print FILEHANDLE "<subnet_mask> ".$distinct_subnetmask[$r]."
</subnet_mask> \n";
 print FILEHANDLE "<rowset> \n";
 $i=0;

 foreach(@res_query)
 {
 @data=split(/\|\|/,$res_query[$i]);

 if($data[1] eq $SubnetID)
 {
 $line_get=$data[0];
 print FILEHANDLE $line_get." \n";
 }
 $i++;
 }
 print FILEHANDLE "</rowset> \n";
 $r++;
 print FILEHANDLE "</subnet> \n";
 }

 print FILEHANDLE "</page> \n";
 close(FILEHANDLE);
$dbh->commit();

}
###########subroutine which returns the subnet ID #####################
sub GetSubnetID
{
 my @ip_add = split(/\./,$_[0]);
 my @subnet_ip=split(/\./,$_[1]);
 my $i=0;
 my $temp1='';
 my $bin1='';
 my $temp2='';
 my $bin2='';
 my $binary_ip='';
 my $binary_subnet='';
 my $res1='';
 my $res2='';

 foreach (@ip_add)

Appendices

 270

 {
 $temp1=sprintf "%d",$ip_add[$i];

 $bin1=unpack("B32", pack("N", $temp1));

 $temp2=sprintf "%d",$subnet_ip[$i];
 $bin2=unpack("B32", pack("N", $temp2));
 $res1=ProceedSubnetID($bin1,$bin2);
 if($i>0)
 {
 $res2=$res2."\.".$res1;
 }
 else
 {
 $res2=$res1;

 }
 $i++;
 }

 return $res2;
}
#####subroutine which multiply the 2 vectors as .* (Matlab)###############
sub ProceedSubnetID
{

 my $l=0;
 my $k=0;
 my $res1=0;
 my $i=0;
 my @bin_add=split(//,$_[0]);
 my @bin_subnet=split(//,$_[1]);
 my $j=@bin_add-1;
 foreach(@bin_add)
 {
 $l=$bin_add[$i]*$bin_subnet[$i];
 $k=sprintf "%d",$l;
 if($k==1)
 {
 $res1=$res1+2**$j;
 }
 $i++;
 $j--;
 }
 return $res1;
}

########### subroutine which prints the results in the xml file
#############
sub getAllHostNodes {
 my $j=0;
 open(XMLOPTIONS,"$_[1]") || die("can't open datafile: $!");
 @lines=<XMLOPTIONS>;
 close(XMLOPTIONS);
 open(FILEHANDLE,">$_[0]") || die("can't open datafile: $!");
 print FILEHANDLE "<?xml version = '1.0'?> \n";
 print FILEHANDLE "<page> \n";
 foreach $option_dhcp(@lines)
 {

Appendices

 271

 print FILEHANDLE
"<options><option>$option_dhcp</option></options>\n";
 print "all host nodes options= $option_dhcp";
 }

my $sth;

$sth=$dbh->prepare(q{select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(e.ipname,1,instr(e.ipname,'.',1)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_device_booting r, lhcb_hwport_properties s,lhcb_lg_devices g where
t.ipaddress=e.ipaddress and r.deviceid=g.deviceid and t.port_nbr=s.port_nbr
and t.port_type=s.port_type and t.deviceid=g.deviceid and
s.serialnb=g.serialnb and g.node=1 and t.port_type='control' union all
select
xmlelement("row",xmlelement("ethernet_add",s.macaddress),xmlelement("ip_add
",t.ipaddress),xmlelement("ipname",substr(e.ipname,1,instr(e.ipname,'.',1)-
1)),xmlelement("filename",r.boot_image_location)).getClobVal(),t.ipaddress,
e.subnet_info from lhcb_ipinfo e,lhcb_port_properties
t,lhcb_devicetype_booting r,lhcb_hwport_properties s,lhcb_lg_devices g
where t.ipaddress=e.ipaddress and r.devicetypeid=g.devicetypeid and
g.node=1 and t.port_type='control' and t.port_nbr=s.port_nbr and
t.port_type=s.port_type and t.deviceid=g.deviceid and
s.serialnb=g.serialnb and g.deviceid not in (select deviceid from
lhcb_device_booting) });

$sth->execute();

 my $r=0;
 my $i=0;
 my $count_distinct_subnet=0;
 my $count_distinct_subnet1=0;

 my @distinct_subnetID;
 my @distinct_subnetmask;
 my @res_query;
 while(@data=$sth->fetchrow_array())
 {

 my $line_get=$data[0];
 my $subnet_mask=$data[2];
 $SubnetID=GetSubnetID($data[1],$data[2]);
 $data[1]=$subnetID;
 $_= $SubnetID;
 $count_distinct_subnet1= $count_distinct_subnet;
 push(@distinct_subnetID, $_) unless ($seen{$_}++);
 $count_distinct_subnet=@distinct_subnetID;
 if($count_distinct_subnet>$count_distinct_subnet1)
 {
 push(@distinct_subnetmask,$data[2]);

Appendices

 272

 #print FILEHANDLE "<subnet_found> $SubnetID <subnet_found>\n";
 }
 push(@res_query,$line_get."||".$SubnetID);

 }

 foreach(@distinct_subnetID)
 {
 $SubnetID=$distinct_subnetID[$r];
 print FILEHANDLE "<subnet> \n";
 print FILEHANDLE "<subnetID> ".$SubnetID." </subnetID> \n";
 print FILEHANDLE "<subnet_mask> ".$distinct_subnetmask[$r]."
</subnet_mask> \n";
 print FILEHANDLE "<rowset> \n";
 $i=0;
 foreach(@res_query)
 {
 @data=split(/\|\|/,$res_query[$i]);

 if($data[1] eq $SubnetID)
 {
 $line_get=$data[0];
 print FILEHANDLE $line_get." \n";
 }
 $i++;
 }
 print FILEHANDLE "</rowset> \n";
 $r++;
 print FILEHANDLE "</subnet> \n";
 }

 print FILEHANDLE "</page> \n";
 close(FILEHANDLE);
$dbh->commit();

}

Appendices

 273

Appendix D Example of C code to exclude and include back host
nodes

/**
******/
// Author: L.Abadie
// compatible with version: v3.2 of the CIC_DB_lib
// example of C code to exclude and include back nodes
/**
******/

#include <iostream>
#include<stdio.h>
#include<unistd.h>
#include <ctime>
#include <time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "cicDB.h"

int execute_dhcp(char* dhcp_name)
{
 int res=0;
 execl("/usr/local/bin/perl","perl","dhcpCfg_generate.pl",dhcp_name,NULL);
 std::cout<<"could not execute the perl script and err="<<std::endl;
 res=-1;
 return res;
}

int main()
{
 pid_t pid_pere,pid_fils,pid_first,pid_1;
 int res=0;
 int res2=0;
 int len_array=1000;
 char* nto_list;
 char ErrMess[1000];
 int status=0;
 int status1=0;
 int i=0;
 char nodeName[50];
char nodeName_bis[50];

char dhcp_server1[50]=”DAQ_CTRL_PC_01” ;
char dhcp_server2[50]=”DAQ_CTRL_PC_02” ;

 res=DBConnexion(DB_NAME,login,pwd,ErrMess);
 for(i=1;i<33;i++)
 {
//disabling the host nodes from node_2_1 to node_2_32
sprintf(nodeName,"node_2_%d",i);
 if(i = =1)
 // the second parameter (nodeused) is set to 0 to disable the node.
 res_query=UpdateMultipleDeviceNodeUsed(nodeName,0,1,0,ErrMess);
else
 {
 if(i==32)

Appendices

 274

 resquery=UpdateMultipleDeviceNodeUsed(nodeName,0,0,1,ErrMess);
 else
 resquery=UpdateMultipleDeviceNodeUsed(nodeName,0,0,0,ErrMess);
 }
}
pid_first=fork();
if(pid_first==-1)
 {
 perror("error fork");
 res=DBDeconnexion(ErrMess);
 exit(1);
 }
 else
 {
 pid_fils=getpid();
 pid_pere=getpid();
 if(pid_first==0)
 {
 std::cout<<"before generating the first dhpc config file
..."<<std::endl;
 res=execute_dhcp(dhcp_server_1);
 std::cout<<"Error in generating the first dhpc config
file..."<<std::endl;
 res=DBDeconnexion(ErrMess);
 perror("exec");
 exit(1);
 }
 else
 {
 res=wait(&status);
 if(WIFEXITED(status)!=0)
 {
 for(i=1;i<33;i++)
 {
 sprintf(nodeName,"node_2_%d",i);
 sprintf(nodeName_bis,"node_1_%d",i);
 if(i = =1)
 {

 res_query=UpdateMultipleDeviceNodeUsed(nodeName,1,1,0,ErrMess);

 res_query=UpdateMultipleDeviceNodeUsed(nodeName_bis,0,0,0,ErrMess);
 }
 else
 {
 if(i==32)
 {

 resquery=UpdateMultipleDeviceNodeUsed(nodeName,1,0,0,ErrMess);

 resquery=UpdateMultipleDeviceNodeUsed(nodeName_bis,0,0,1,ErrMess);
 }
 else
 {

 resquery=UpdateMultipleDeviceNodeUsed(nodeName,1,0,0,ErrMess);

 resquery=UpdateMultipleDeviceNodeUsed(nodeName_bis,0,0,0,ErrMess);
 }
 }
 }

Appendices

 275

 pid_1=fork();
 if(pid_1= =-1)
 {
 perror("error fork");
 res=DBDeconnexion(ErrMess);
 exit(1);
 }
 else
 {
 if(pid_1==0)
 {
 std::cout<<"before generating the second dhcp cfg file
..."<<std::endl;
 res=execute_dhcp(dhcp_server_2);
 std::cout<<"Error in generating the second dhpc config
file..."<<std::endl;

 res=DBDeconnexion(ErrMess);
 perror("exec");
 exit(1);
 }
 else
 {
 res=wait(&status1);
 if(WIFEXITED(status1)!=0)
 {
 for(i=1;i<33;i++)
 {
 sprintf(nodeName,"node_1_%d",i);
 if(i = =1)
 // the second parameter (nodeused) is set to 0 to disable the node.
 res_query=UpdateMultipleDeviceNodeUsed(nodeName,1,1,0,ErrMess);
else
 {
 if(i==32)
 resquery=UpdateMultipleDeviceNodeUsed(nodeName,1,0,1,ErrMess);
 else
 resquery=UpdateMultipleDeviceNodeUsed(nodeName,1,0,0,ErrMess);
 }
}

 res=DBDeconnexion(ErrMess);
 }
 else
 {
 std::cout<<"child process 2 exited
abnormally..."<<std::endl;
 res=DBDeconnexion(ErrMess);
 }
 }

 }

 }
 else
 {
 std::cout<<"child process 1 did not exit
properly..."<<std::endl;
 res=DBDeconnexion(ErrMess);

Appendices

 276

 perror("exec");
 exit(1);
 }
 }
 }
}

Appendices

 277

Appendix E Perl script to generate the dns set of files

/**
******/
// Author: L.Abadie
// version: v1.2
// Perl script to generate the dns forward and reverse file
// Replace XXX with the correct values
/**
******/

#!/usr/local/bin/perl

use DBI;
use XML::XSLT;
use Fcntl;
$user='XXXXX';
$passwd='XXXXXX';
$lhcb_zone_name="XXXX";
$dns_name_master="XXXXXXXXX";

$port_type='control';
$dns_fct='DNS_SERVER';
$max_limit_creation=9;
$xmlfile_options="dns_options.xml";
$xmlfile_dns = "ecs.lhcb.xml";
$dns_configfile = "forward.ecs.lhcb";
$local_host="root.localhost.";
$xslfile_dns = "dns_style.xsl";
$xslfile_reverse = "dns_style_rev.xsl";
$serial_dns=1;
my @list_subnetID;
my $serial_dns=GetNextSerial($xmlfile_dns,$max_limit_creation);
if($serial_dns==-1)
{
 print "ERROR : dns config have been created more than
$max_limit_creation \n";
 exit;
}
else
{
 $dbh = DBI-> connect("dbi:Oracle:devdb10","$user",
"$passwd",{AutoCommit => 0}) or die "Couldn't connect to database: " . DBI-
> errstr," \n";
 $dbh->{LongReadLen} = 512 * 1024;
 #generate the forward dns config file
 $rescode=getIPnameIPaddress($xmlfile_dns,$xmlfile_options,$dns_name_m
aster,$lhcb_zone_name,$serial_dns,$port_type,$dns_fct,$local_host);
 my $parser = XML::XSLT->new ($xslfile_dns);
 $parser->transform($xmlfile_dns);
 if (-e $reverse_dns_file)
 {
 open(FILEHANDLE,">$dns_configfile") || die("can't open
datafile: $!");
 }
 else
 {
 sysopen(FILEHANDLE,"$dns_configfile", O_WRONLY|O_TRUNC|O_CREAT)
|| die("can't open datafile 2: $!");

Appendices

 278

 }

 @output_file= $parser->toString;
 my $array_element ;
 foreach $array_element(@output_file)
 {
 print FILEHANDLE $array_element." \n";
 }
 close(FILEHANDLE);

 if($rescode==0)
 {
 my $i=0;

 #generate the reverse dns config file per subnet;

 @iplist_content=getIPaddressIPname($subID_dns_file,$xmlfile_options,$
dns_name_master,$serial_dns,$lhcb_zone_name,$port_type,$dns_fct,$subID,$loc
al_host,$reverse_dns_file);
 $size2 = $iplist_content[0];
 if($size2!=-1)
 {
 $iplist_len = @iplist_content;
 $subID_line=$iplist_content[$iplist_len-1];
 @list_subnetID=split(/:/,$subID_line);
 pop(@iplist_content);

 foreach $subID(@list_subnetID)
 {
 my @ipdecomp = split(/\./,$subID);
 if($ipdecomp[1]==0)
 {
 $subID_dns_file=$ipdecomp[0].".in-
addr.arpa.xml";
 $reverse_dns_file=$ipdecomp[0].".in-
addr.arpa";
 }
 else
 {
 if($ipdecomp[2]==0)
 {

 $subID_dns=join(".",$ipdecomp[0],$ipdecomp[1]);
 $subID_dns_file=$subID_dns.".in-
addr.arpa.xml";
 $reverse_dns_file=$subID_dns.".in-
addr.arpa";
 }
 else
 {
 if($ipdecomp[3]==0)
 {

 $subID_dns=join(".",$ipdecomp[0],$ipdecomp[1],$ipdecomp[2]);
 $subID_dns_file=$subID_dns.".in-
addr.arpa.xml";
 $reverse_dns_file=$subID_dns.".in-
addr.arpa";
 }
 }

Appendices

 279

 }

 @generic_settings=getIPaddressIPnameForDNS($subID_dns_file,$xmlfile_o
ptions,$dns_name_master,$serial_dns,$lhcb_zone_name,$port_type,$dns_fct,$su
bID,$local_host,$reverse_dns_file);
 $size1 = $generic_settings[0];
 if(size1!=-1)
 {

 if (-e $subID_dns_file)
 {
 #print "file exist and $subID_dns_file
\n";
 open(FILEHANDLE,">$subID_dns_file") ||
die("can't open datafile: $!");
 }
 else
 {
 #print "file doesn 't exist and
$subID_dns_file \n";
 sysopen(FILEHANDLE,"$subID_dns_file",
O_WRONLY|O_TRUNC|O_CREAT) || die("can't open datafile 2: $!");
 }
 foreach $generic_line(@generic_settings)
 {
 print FILEHANDLE $generic_line." \n";
 }

 foreach $ip_line(@iplist_content)
 {
 @ipline_split = split(/\?/,$ip_line);
 $current_subID=$ipline_split[0];

 if($subID=~m /$current_subID/)
 {
 $current_ipline=$ipline_split[1];
 print FILEHANDLE
$current_ipline." \n";
 }
 }
 print FILEHANDLE "</rowset> \n";
 print FILEHANDLE "</page> \n";
 close(FILEHANDLE);
 my $parser = XML::XSLT->new
($xslfile_reverse);
 $parser->transform($subID_dns_file);
 if (-e $reverse_dns_file)
 {
 open(FILEHANDLE,">$reverse_dns_file") ||
die("can't open datafile: $!");
 }
 else
 {
 sysopen(FILEHANDLE,"$reverse_dns_file",
O_WRONLY|O_TRUNC|O_CREAT) || die("can't open datafile 2: $!");
 }
 @output_file= $parser->toString;
 my $array_element ;
 foreach $array_element(@output_file)
 {
 print FILEHANDLE $array_element." \n";

Appendices

 280

 }
 close(FILEHANDLE);
 }
 else
 {
 print "ERROR in creating reverser dns_file for
the following file $subID_dns_file, no IP address was found";
 }
 }
 }
 else
 {
 print "ERROR in creating reverser dns_file, no dns
found";
 $rescode=$dbh->disconnect();
 exit;
 }
 print " OUT OF LOOP \n";
 }
 else
 {
 print "ERROR in creating dns_file";
 $rescode=$dbh->disconnect();
 exit;
 }
 print "just before disconnect \n";
 $rescode=$dbh->disconnect();
 print " disconnect \n";
 exit;
}

#######subroutine which returns the next serial#########

sub GetNextSerial
{
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =localtime(time);
$mon+=1;
$year += 1900;
$stop=0;
my $last_serial=0;
#my $serial=$year.$mon.$mday."0";
my $myserial=sprintf("%d%02d%02d0",$year,$mon,$mday);
my $return_serial;
#print "my option 0 $myserial \n";
if (-e $_[0])
{
 open(XMLDNS,"$_[0]") || die("can't open datafile: $!");
 @lines=<XMLDNS>;
 foreach $option_dns(@lines)
 {
 if($option_dns =~/<serial>/i)
 {
 #print "my option 1 $option_dns \n";
 my $option_line = substr($option_dns,
index($data,"<serial>")+9,index($data,"</serial>")-
index($data,"<serial>")+9);
 print "my option 2 $option_line \n";
 $stop=1;
 $last_serial=sprintf("%d",$option_line);
 #print "my option 3 $last_serial \n";
 last;

Appendices

 281

 }

 }

 if($stop==0)
 {
 $last_serial=0;
 }
 #print "my option 4 $myserial and $last_serial \n";
 if($myserial<=$last_serial)
 {
 #print "my option 5 $last_serial and $_[1] \n";
 if(($last_serial-$_[1])%10!=0)
 {
 $last_serial++;
 #print "my option 6 $last_serial \n";
 $return_serial=$last_serial;

 }
 else
 {
 $return_serial=-1;
 }
 }
 else
 {
 $return_serial=$myserial;
 }
}
else
{
 $return_serial=$myserial;
}
return $return_serial;
}

#######

########### subroutine which prints the results in the xml file
#############
sub getIPnameIPaddress {
 my $j=0;
 my $rescode=0;
 my $sth_1;
 my $first_line="$_[3]. IN SOA $_[2]."."$_[3]. ". "$_[7] ";
 my $choice=0;

 open(XMLOPTIONS,"$_[1]") || die("can't open datafile: $!");
 @lines=<XMLOPTIONS>;
 close(XMLOPTIONS);
 print "file name $_[0]";
 if (-e $subID_dns_file)
 {
 open(FILEHANDLE,">$_[0]") || die("can't open datafile: $!");
 }
 else

Appendices

 282

 {
 sysopen(FILEHANDLE,"$_[0]", O_WRONLY|O_TRUNC|O_CREAT) ||
die("can't open datafile 2: $!");
 }
 print FILEHANDLE "<?xml version = '1.0'?> \n";
 print FILEHANDLE "<page> \n";
 print FILEHANDLE "<option_list>\n";
 print FILEHANDLE "<SOA>${first_line}</SOA>\n";
 print FILEHANDLE "<serial>${_[4]}</serial>\n";
 foreach $option_dns(@lines)
 {
 print FILEHANDLE "$option_dns \n";
 }

 print FILEHANDLE "</option_list>\n";

#my $statement=FormatQuery($choice);
$sth=$dbh->prepare(q{select
xmlelement("row",xmlelement("ipname",e.ipname),xmlelement("ipadd",t.ipaddre
ss),xmlelement("function",'NS')).getClobVal() from lhcb_ipinfo
e,lhcb_port_properties t,lhcb_lg_devices g,lhcb_device_functions l where
t.ipaddress=e.ipaddress and t.deviceid=g.deviceid and t.port_type=:1 and
l.function_name=:2 and mod(g.functionid,l.functionid)=0 and
g.functionid!=0});
$sth->bind_param(1,$_[5]);
$sth->bind_param(2,$_[6]);
$sth->execute();
 print FILEHANDLE "<rowset> \n";
print FILEHANDLE
"<row><ipname>$_[3].</ipname><ipadd>$_[2].$_[3].</ipadd><function>NS</funct
ion></row>\n";
 my $zone_suffix=".".$_[3];
 while(@data=$sth->fetchrow_array())
 {

 if($data[0]=~/${zone_suffix}<\/ipname>/i)
 {

 $data[0]=~ s/$zone_suffix/ /;
 print FILEHANDLE "$data[0]\n";
 }

 $j++;

 }

 $sth=$dbh->prepare(q{select
xmlelement("row",xmlelement("ipname",e.ipname),xmlelement("ipadd",t.ipaddre
ss),xmlelement("function",'A')).getClobVal() from lhcb_ipinfo
e,lhcb_port_properties t,lhcb_lg_devices g,lhcb_device_functions l where
t.ipaddress=e.ipaddress and t.deviceid=g.deviceid and t.port_type=:1 and
l.function_name=:2 and
mod(decode(g.functionid,0,l.functionid+1,g.functionid),l.functionid)!=0});

$sth->bind_param(1,$_[5]);
$sth->bind_param(2,$_[6]);

Appendices

 283

$sth->execute();

 my $zone_suffix=".".$_[3];
 while(@data=$sth->fetchrow_array())
 {

 if($data[0]=~/${zone_suffix}<\/ipname>/i)
 {

 $data[0]=~ s/$zone_suffix/ /;
 print FILEHANDLE "$data[0]\n";
 }

 $j++;

 }
 if($j==0)
 {
 #print "ERROR : no ip address \n";
 $rescode=-1;
 close(FILEHANDLE);
 return $rescode;
 }
 $choice++;
 #print "second query \n";

 $sth=$dbh->prepare(q{select
xmlelement("row_scd",xmlelement("cipname",e.ipname),xmlelement("cname",g.ip
alias)).getClobVal() from lhcb_ipinfo e,lhcb_ipaliases
g,lhcb_port_properties m where g.ipaddress=e.ipaddress and m.port_type=:1
and m.ipaddress=e.ipaddress});

 $sth->bind_param(1,$_[5]);
 $sth->execute();
 $j=0;
 while(@data=$sth->fetchrow_array())
 {
 #print "line $data[0] \n";
 if($data[0]=~ /${zone_suffix}<\/cipname>/i)
 {
 #print "in cname data =$data[0] \n";
 $data[0]=~ s/$zone_suffix/ /;
 }
 if($data[0]=~/${zone_suffix}<\/cname>/i)
 {
 #print "in cname data =$data[0] \n";
 $data[0]=~ s/$zone_suffix/ /;
 }
 print FILEHANDLE "$data[0] \n";

 }
 print FILEHANDLE "</rowset> \n";
 print FILEHANDLE "</page> \n";
 close(FILEHANDLE);

return $rescode;

Appendices

 284

}

########### get the common header to the reverse dns file #############
sub getIPaddressIPnameForDNS {
 my $j=0;
 my $sth_1;
 my $rescode=0;
 my $serial_dns=$_[3];
 my $zone_suffix=".".$_[4];
 my $choice=2;
 my @header_content;
 my $first_line="$_[9]. IN SOA ".$_[2].$zone_suffix.". ".$_[8] ;
 open(XMLOPTIONS,"$_[1]") || die("can't open datafile: $!");
 @lines=<XMLOPTIONS>;
 close(XMLOPTIONS);
 my $new_line="<SOA>${first_line}</SOA>";
 push(@header_content,"<?xml version = '1.0'?> ");
 push(@header_content, "<page>");
 push(@header_content,"<option_list>");
 push(@header_content, $new_line);
 $new_line="<serial>${serial_dns}</serial>";
 push(@header_content, $new_line);
 foreach $option_dns(@lines)
 {
 push(@header_content,${option_dns});
 #print "in the reverse options= $option_dns";
 }
 push(@header_content, "</option_list>");

 #my $statement=FormatQuery($choice);
 $sth=$dbh->prepare(q{select
xmlelement("row",xmlelement("ipadd",t.ipaddress),xmlelement("ipname",e.ipna
me||'.'),xmlelement("function",'NS')).getClobVal(),e.subnet_info from
lhcb_ipinfo e,lhcb_port_properties t,lhcb_lg_devices
g,lhcb_device_functions l where t.ipaddress=e.ipaddress and
t.deviceid=g.deviceid and t.port_type=:1 and l.function_name=:2 and
mod(g.functionid,l.functionid)=0 and g.functionid!=0});

$sth->bind_param(1,$_[5]);
$sth->bind_param(2,$_[6]);
$sth->execute();

 push(@header_content, "<rowset>");

$new_line="<row><ipadd>$_[9].</ipadd><ipname>$_[2]$zone_suffix.</ipname><fu
nction>NS</function></row>";
 push(@header_content, $new_line);
 while(@data=$sth->fetchrow_array())
 {

 my $ipadd = substr($data[0],
index($data[0],"<ipadd>")+7,index($data[0],"</ipadd>")-
index($data[0],"<ipadd>")-7);

Appendices

 285

 my @ipdecomp = split(/\./,$ipadd);

 @ipdecomp=reverse @ipdecomp;

 my $reverse_ip=join(".",@ipdecomp);
 $reverse_ip=$reverse_ip.".";

 $data[0]=~ s/$ipadd/$reverse_ip/;
 push(@header_content,$data[0]);

 $j++;

 }
 if($j==0)
 {
 print "ERROR no ipaddress \n";
 $rescode=-1;
 push(@header_content, $rescode);
 return @header_content;
 }
 else
 {
 return @header_content;
 }
 }
########### subroutine which prints the results in the xml file
#############
sub getIPaddressIPname {
 my $j=0;
 my $sth_1;
 my $rescode=0;
 my $serial_dns=$_[3];
 my $zone_suffix=".".$_[4];
 my $choice=2;
 my @iplist;
 my @distinct_subnetID;
 my $count_distinct_subnet=0;
 $sth=$dbh->prepare(q{select
xmlelement("row",xmlelement("ipadd",t.ipaddress),xmlelement("ipname",e.ipna
me||'.'),xmlelement("function",'PTR')).getClobVal(),e.subnet_info from
lhcb_ipinfo e,lhcb_port_properties t,lhcb_lg_devices
g,lhcb_device_functions l where t.ipaddress=e.ipaddress and
t.deviceid=g.deviceid and t.port_type=:1 and l.function_name=:2 and
mod(decode(g.functionid,0,l.functionid+1,g.functionid),l.functionid)!=0});

$sth->bind_param(1,$_[5]);
$sth->bind_param(2,$_[6]);
$sth->execute();

 while(@data=$sth->fetchrow_array())
 {

Appendices

 286

 my $ipadd = substr($data[0],
index($data[0],"<ipadd>")+7,index($data[0],"</ipadd>")-
index($data[0],"<ipadd>")-7);
 my $current_subnet=GetSubnetID($ipadd,$data[1]);
 $_= $current_subnet;
 $count_distinct_subnet1= $count_distinct_subnet;
 push(@distinct_subnetID, $_) unless ($seen{$_}++);
 $count_distinct_subnet=@distinct_subnetID;

 my @ipdecomp = split(/\./,$ipadd);

 @ipdecomp=reverse @ipdecomp;

 my $reverse_ip=join(".",$ipdecomp[0],$ipdecomp[1]);

 $data[0]=~ s/$ipadd/$reverse_ip/;

 my $full_line=join("?",$current_subnet,$data[0]);
 push(@iplist, $full_line);

 $j++;

 }

 if($j==0)
 {
 print "ERROR no ipaddress \n";
 $rescode=-1;
 push(@iplist, $rescode);
 return @iplist;
 }
 else
 {

 my $list_of_subnet=join(":",@distinct_subnetID);
 push(@iplist, $list_of_subnet);
 return @iplist;
 }
}

###########subroutine which returns the subnet ID #####################
sub GetSubnetID
{
 my @ip_add = split(/\./,$_[0]);
 my @subnet_ip=split(/\./,$_[1]);
 my $i=0;
 my $temp1='';
 my $bin1='';
 my $temp2='';
 my $bin2='';
 my $binary_ip='';
 my $binary_subnet='';
 my $res1='';
 my $res2='';

Appendices

 287

 foreach (@ip_add)
 {
 $temp1=sprintf "%d",$ip_add[$i];

 $bin1=unpack("B32", pack("N", $temp1));

 $temp2=sprintf "%d",$subnet_ip[$i];
 $bin2=unpack("B32", pack("N", $temp2));
 $res1=ProceedSubnetID($bin1,$bin2);
 if($i>0)
 {
 $res2=$res2."\.".$res1;
 }
 else
 {
 $res2=$res1;

 }
 $i++;
 }

 return $res2;
}
#####subroutine which multiply the 2 vectors as .* (Matlab)###############
sub ProceedSubnetID
{

 my $l=0;
 my $k=0;
 my $res1=0;
 my $i=0;
 my @bin_add=split(//,$_[0]);
 my @bin_subnet=split(//,$_[1]);
 my $j=@bin_add-1;
 foreach(@bin_add)
 {
 $l=$bin_add[$i]*$bin_subnet[$i];
 $k=sprintf "%d",$l;
 if($k==1)
 {
 $res1=$res1+2**$j;
 }
 $i++;
 $j--;
 }
 return $res1;
}

Appendices

 288

Appendix F The API of the CIC_DB_lib (C code)

/**
******/
// Author: L.Abadie
// version: v3.2
// CIC_DB_lib API
/**
******/

int DBDeconnexion(char* ErrorMessage);

int DBConnexion(char* server,char* usr,char* pwd,char* ErrorMessage);

//******** Get information from CIC DB****************//

int GetDeviceTypeRow(char* devitype,int &len_devtype,char*
devtype_result,char* ErrorMessage); UC 10

int GetDeviceRow_devicename(char* functionaldeviname,int &len_device, char*
device_result,char* ErrorMessage); UC 12, UC13, UC 33

int GetDeviceRow_devid(int deviceID,int &len_device, char*
device_result,char* ErrorMessage); UC 12, UC13, UC 33

int GetPortRow_pid(int portID, int &len_port,char* port_row_result,char*
ErrorMessage); UC 12

int GetPortRow_devname(char* devicename, char* port_nb,int port_way, char*
port_type,int &len_port, char* port_row_result,char* ErrorMessage); UC 12,

int GetPortRow_devid(int deviceid, char* port_nb,int port_way,char*
port_type,int &len_port, char* port_row_result,char* ErrorMessage); UC 12,

int GetMacroConnectivityRow_lkid(int lkID, int &len_conn,char*
Conn_row,char* ErrorMessage); UC 7, UC 15

int GetMacroConnectivityRow_node(int nodeID, char* port_nb, int
port_way,char* port_type,int &len_conn, char* Conn_row,char* ErrorMessage);
UC 7, UC 15

int GetMacroConnectivityRow_nodename(char* node_name, char* port_nb, int
port_way,char* port_type,int &len_conn, char* Conn_row,char* ErrorMessage);
UC 7, UC 15

int GetIPInfoRow(char* ip_address,int &len_ip, char* IP_row,char*
ErrorMessage); UC 12

int GetLkTypeRow_lkname(char* lktype_name,int &len_lktype,char*
LkType_row,char* ErrorMessage); UC 30

int GetLkTypeRow_lknb(int lktype_nbr,int &len_lktype,char* LkType_row,char*
ErrorMessage); UC 30

int GetLkTypeDecomposition_lknb(int lktype_nbr,int &len_array,char*
LkType_row,char* ErrorMessage); UC 30

Appendices

 289

int GetDeviceNamesPerType(char* devitype, int &len_array, char*
devIDs_list,char* ErrorMessage); UC 18

int GetDeviceIDsPerType(char* devitype, int &len_array, int*
devIDs_list,char* ErrorMessage); UC 18

int GetLkFromDevID(int node_from, int &len_array, int* lkfrom_list,char*
ErrorMessage); UC 18

int GetLkToDevID(int node_to, int &len_array, int* lkfrom_list,char*
ErrorMessage); UC 18

int GetPortIDPerDevID(int devID, int &len_array, int* portID_list,char*
ErrorMessage); UC 12

int GetMacIPAddPerDevID(int devID, int &len_mac,char* MacAdd_list,char*
ErrorMessage); UC 12

int GetDestinationNamePerDevPort(char* devname,char* port_nb, char*
port_type,int &len_Destin_list,char* Destin_list,char* ErrorMessage); UC 19

int GetFreeDeviceNamesPerType(char* devitype, int &len_array, char*
devIDs_list,char* ErrorMessage); UC 18,

int GetDetailedConnectivityBetweenDevices(char* dev_from, char* dev_to,
char* nfrom_list,int& len_array,int & nfrom_arraylen,int & pfrom_arraylen,
int & nto_arraylen, int & pto_arraylen,int &lkinfo_arraylen,char*
pfrom_list,char* pto_list,int* pfrom1_list,int* pto1_list,char*
nto_list,int* pathid_list, int* link_pos_list,char* lkinfo_list,int
reload_connectivity,int delete_connectivity,char* ErrMess); UC 6, UC 30

int GetDetailedConnBetweenDeviceDevType(char* dev_from, char* dev_to,int
devto_type_given, char* nfrom_list,char* pfrom_list,char* pto_list,int&
len_array,int & nfrom_arraylen,int & pfrom_arraylen, int & nto_arraylen,
int & pto_arraylen,int &lkinfo_arraylen, int* pfrom1_list,int*
pto1_list,char* nto_list,int* pathid_list, int* link_pos_list,char*
lkinfo_list,int reload_connectivity,int delete_connectivity,char* ErrMess);
UC 6, UC 32

int GetConnectivityBetweenDevices(char* dev_from, char* dev_to, int&
len_array, int &pfrom1_arraylen,int &nfrom1_arraylen,int &pto1_arraylen,int
&nto1_arraylen,int &lkinfo_arraylen,char* nfrom1_list,char* nto1_list,char*
pfrom1_list,int* pfrom_list,char* pto1_list,int* pto_list,int*
pathid_list,int* link_pos_list,char* lkinfo_list,int
reload_connectivity,int delete_connectivity,char* ErrMess); UC 6, UC 32

int GetConnOutBetweenDeviceDeviceType(char* dev_from, char* devtype,int
devtype_give, int& len_array, char* pfrom_arraylist, int
reload_connectivity,int delete_connectivity,char* ErrMess); UC 6

int GetBusySubsystems(int &len_array1,char* ListSubsystemUsed,char*
ListSubsystemUsed1,int &len_array, int* ListSubsystemState, char*
ErrorMessage); UC 17

int GetDeviceNamesPerLocation(char* location, int &len_array, char*
devnames_list,char* ErrorMessage); UC 19, UC 33

int GetSpareHWPerLocation(char* location, int &len_array, char*
devnames_list,char* ErrorMessage); UC 20, UC 22

Appendices

 290

int GetSpareHWPerType(char* hwtype, int &len_array, char*
devnames_list,char* ErrorMessage); UC 20, UC 22

int GetFunctionalDeviceStatus(char* devicename,char* device_status ,char*
ErrMess); UC 24

int GetHWDeviceStatus(char* serialnb,char* device_status ,char* ErrMess);
UC 25

int GetHWDeviceRow_serialnb(char* serialnb,int &len_device, char*
device_result,char* ErrorMessage); UC 20

int GetFunctionalDeviceByStatus(char* system_name, char* device_status, int
&len_devlist , char* device_list,char* ErrMess); UC 30

int GetHWLastFunctionalDevice(char* serialnb,char*
functional_devicename,int &len_functionaldname ,char* ErrMess); UC 21

int GetFunctionalDeviceLastHW(char* functional_devicename,char*
serialnb,int &len_serialnb ,char* ErrMess); UC 29

int GetHistoryOfHWDevice(char* serialnb,char* functionaldevice_history,int
&len_history , char* min_date, char* max_date,char* ErrMess); UC 22

int GetHWDeviceByStatus(char* system_name, char* device_status,int
&len_status ,char* functionaldevice_status,char* ErrMess); UC 20, UC 21

int GetHistoryOfFunctionalDevice(char* functional_devicename,char*
functionaldevice_history,int &len_history , char* min_date, char*
max_date,char* ErrMess); UC 22, UC 33

int GetBoardCpntRow_cpntname(char* functionalcpntname,int &len_cpnt, char*
cpnt_result,char* ErrorMessage); UC 22

int GetBoardCpntRow_cpntid(int cpntID,int &len_cpnt, char*
cpnt_result,char* ErrorMessage); UC 22

int GetMicroConnectivityRow_lkid(int lkID, int &len_conn,char*
Conn_row,char* ErrorMessage); UC 28

int GetMicroConnectivityRow_node(int cpntID, int port_nb, int port_way,int
&len_conn, char* Conn_row,char* ErrorMessage); UC 28

int GetMicroConnectivityRow_cpntname(char* cpnt_name, int port_nb, int
port_way,int &len_conn, char* Conn_row,char* ErrorMessage); UC 28

int GetBoardCpntPerType(char* cpnttype, int &len_array, char*
cpntIDs_list,char* ErrorMessage); UC 32

int GetMicroLkFromCpntID(int cpntid_from,int motherboardID, int &len_array,
int* lkfrom_list,char* ErrorMessage); UC 28

int GetMicroLkToCpntID(int cpnt_to,int motherboardID, int &len_array, int*
lkfrom_list,char* ErrorMessage); UC 28

int GetCpntNamesPerBoard(char* motherboardname, int &len_array, char*
devnames_list,char* ErrorMessage); UC 22

int GetSpareHWCpntPerLocation(char* location, int &len_array, char*
devnames_list,char* ErrorMessage); UC 20

Appendices

 291

int GetSpareHWCpntPerType(char* hwtype, int &len_array, char*
devnames_list,char* ErrorMessage);UC 20, UC 28

int GetHWCpntRow_serialnb(char* serialnb,int &len_device, char*
device_result,char* ErrorMessage);UC 20

int GetHWCpntRow_snbid(int snbid,int &len_device, char* device_result,char*
ErrorMessage);UC 20

int GetFunctionalBoardCpntStatus(char* cpntname,char* cpnt_status ,char*
ErrMess); UC 28

int GetHWBoardCpntStatus(char* serialnb,int snbid,char* cpnt_status ,char*
ErrMess); UC 29

int GetHWLastFunctionalBoardCpntName(char* serialnb,int snbid,char*
functional_cpntname,int &len_functionaldname ,char* ErrMess); UC 21

int GetFunctionalBoardCpntNameLastHW(char* functional_cpntname,char*
serialnb,int &len_serialnb ,char* ErrMess);UC 29

int GetHistoryOfFunctionalBoardCpntName(char* functional_cpntname,char*
functionalcpnt_history,int &len_history , char* min_date, char*
max_date,char* ErrMess); UC 22, UC 30

int GetHistoryOfHWBoardCpnt(char* serialnb,int snbid,char*
functionalcpnt_history,int &len_history , char* min_date, char*
max_date,char* ErrMess); UC 22, UC 30

int GetHWBoardCpntByStatus(char* cpnt_status,char*
functionalcpnt_status,int &len_status , char* ErrMess); UC 20,UC 21

int GetMicroConnectFromPortid(int mboardportid_from, int mboardportid_to,
char* cpntname,int* pathid_list, int* link_pos_list,int &len_array,char*
nfrom_list,int &nfrom_arraylen,char* nto_list,int &nto_arraylen,char*
last_nfrominfo,int &len_lastnfrominfo,char* last_ntoinfo,int
&len_lastntoinfo,char* ErrMess); UC 32,

int GetMicroConnectToCpntType(int mboardportid_from, int cpnttype_given,
char* cpnttype,int* pathid_list, int* link_pos_list,int &len_array,char*
nfrom_list,int &nfrom_arraylen,char* nto_list,int &nto_arraylen,char*
last_nfrominfo,int &len_lastnfrominfo,char* last_ntoinfo,int
&len_lastntoinfo,char* ErrMess); UC 32

int GetMicroConnectBetweenBoardCpntAndMotherBoard(char* cpntname_from, int
mboard_portid, int* pathid_list, int* link_pos_list,int &len_array,char*
nfrom_list,int &nfrom_arraylen,char* nto_list,int &nto_arraylen,char*
last_nfrominfo,int &len_lastnfrominfo,char* last_ntoinfo,int
&len_lastntoinfo,char* ErrMess); UC 32

int GetPortPerSubsystem(char* dev_from, char* subsystem_name, int&
len_array, char* pfrom_list, char* ErrMess); UC 17,

int GetIPAliasesPerIPName(char* ipname, int &len_array, char*
ipaliases_list,char* ErrorMessage); UC 12, UC 14

int GetIPAliasRow(char* ipalias,int &len_ipalias,char* ipalias_result,char*
ErrorMessage); UC 12,

int GetLkIDsPerLkInfo(char* lkinfo, int &len_array, int* lkIDs_list,char*
ErrorMessage); UC 7

Appendices

 292

int GetDeviceNamesPerFunction(char* function, int &len_array, char*
devnames_list,char* ErrorMessage); UC 13

int GetBootImageRow_devicename(char* functionaldeviname,int &len_device,
char* device_result,char* ErrorMessage); UC 12

int LoadRoutingtable(char* switch_name,int &len_array_destinname,char*
destinname_list, int &len_array_destinip,char* destinip_list, int
&len_array_portnext,char* port_list,int &len_array_ipaddnext,char*
ipaddnext_list,int &len_array_subnetnext,char* subnetnext_list,int
&len_array_macaddnext,char* macaddnext_list,char* ErrMess); UC 8

int CreateDestinationTable(char* devicename, int round_trip_max,char*
ErrMess); UC 9

int CreateRoutingTable(char* devicename, int round_trip_max,char* ErrMess);
UC 8

/****Internal functions for CDBVis to improve performances****************/

int LoadLinkTypeTable(int &len_lkid, int* lkid_list,int& len_lkname,char*
lktypename_list,char* ErrMess);

int LoadDeviceTypeTable(char* systemnameList,int &len_did, char*
devtypename_list,int &len_array,int* devtypeID_list, char* ErrMess);

int MatchDeviceIDDeviceName(char* systemnameList,int &len_did, int*
devid_list,int& len_dname,char* devname_list,char* ErrMess);

int LoadConnectivityTable(char* systemnameList,int &len_array, int*
lkid_list, int * node_from_list,int* node_to_list,int &portfrom_len,int
&portto_len,char* port_nbrfrom_list, char* port_nbrto_list, int*
bidirectional_list, int* lkused_list, int* lktype_list,char*
lkinfo_list,int & lkinfo_len,char* ErrMess);

int GetAvailableFunctions(int &len_array, char* function_list,char*
ErrorMessage);

int DropTableSchema(char* ErrMess); //should not be used

int CreateTableSchema(char* ErrMess); // only used once

int GetListOfSubsystems(int &len_array, char* sysname_list,char*
ErrorMessage);

int GetAllPathsPerDevice(char* systemnameList,char* devname,int& len_array,
int* lkid_list5,int* pathid_list,int* link_pos_list,int
reload_connectivity,int delete_connectivity,char* ErrMessage);

int GetDeviceID_devicename(char* deviname,int &deviceID,char*
ErrorMessage);

int GetDeviceName_deviceid(int deviceID,char* devicename,char*
ErrorMessage);

int GetPortID_portinfo(int deviceID,char* port_nb,char* port_type,int
port_way,int &portID,char* ErrorMessage);

int GetCpntID_cpntname(char* cpntname,int &cpntID,char* ErrorMessage);

Appendices

 293

int GetCpntName_cpntid(int cpntID,char* cpntname,char* ErrorMessage);

/*************** insert functions ****************/

int InsertPort(char* devicename,char* port_nb,int admin_status,int
port_way,int speed,int pxi_booting,char* port_type,char* bia,char*
ipadd1,char* ipname,char* subnet,char* macadd,char* phy,int last_rows,char*
ErrMess); UC 8, UC 11, UC 16

int InsertCompositeLinkType(char* link_name,char * simple_lk_list,int
last_rows,char* ErrMess); UC 8, UC 16, UC 16

int InsertSimpleLinkType(char *link_name,int last_rows,char* ErrMess); UC
8, UC 16

int InsertMacroLink(char* node_from,char* node_to,char* port_nbfrom,char*
port_nbto,char* port_typefrom,char* port_typeto,char* link_type,char*
link_information,int bidirectional_link_used, int last_rows,char*
ErrMess);UC 8, UC 11, UC 16

int InsertFunctionalDevice(char* systemnameList,char* devicename,char*
devicetype,int node,int promiscuous_mode,char* serial_nb,char* hwtype,char*
responsible,char* comments,char* location,char* function_list,int
last_rows,char* ErrMess); UC 8, UC 11, UC 16

int InsertDeviceType(char* systemnameList,char* devicetype,int
nbrofinput,int nbrofoutput, char* description, char* rgbcolor,int
last_rows,char* ErrMess); UC 8, UC 11

int InsertMultiplePorts(char* devicename,char* port_nb,int admin_status,int
port_way,int speed,int pxi_booting,char* port_type,char* bia,char*
ipadd1,char* ipname,char* subnet,char* macadd,char* phy,int first_time1,int
last_rows1,char* ErrMess); UC 8, UC 11, UC 16

int InsertMultipleSimpleLinkTypes(char *link_name,int first_time1,int
last_rows1,char* ErrMess); UC 8, UC 16

int InsertMultipleCompositeLinkTypes(char* link_name,char *
simple_lk_list,int first_time1,int last_rows1,char* ErrMess); UC 8, UC 16

int InsertMultipleDeviceTypes(char* systemnameList,char* devicetype,int
nbrofinput,int nbrofoutput, char* description,char* rgbcolor,int
first_time1, int last_rows1,char* ErrMess); UC 8, UC 11, UC 16

int InsertMultipleFunctionalDevices(char* systemnameList,char*
devicename,char* devicetype,int node,int promiscuous_mode,char*
serial_nb,char* hwtype,char* responsible,char* comments,char*
location,char* function_list,int first_time1,int last_rows1,char* ErrMess);
UC 8, UC 11, UC 16

int InsertMultipleSpareDevices(char* hwname,char* hwtype,char*
serial_nb,char* responsible,char* comments,char* location,int
first_time1,int last_rows1,char* ErrMess); UC 20,

int InsertSpareDevice(char* hwname,char* hwtype,char* serial_nb,char*
responsible,char* comments,char* location,int last_rows1,char* ErrMess); UC
20

int InsertMultipleMacroLinks(char* node_from,char* node_to,char*
port_nbfrom,char* port_nbto,char* port_typefrom,char* port_typeto,char*

Appendices

 294

link_type,char* link_information,int bidirectional_link_used,int
first_time1, int last_rows1,char* ErrMess); UC 8, UC 16

int InsertMultipleSparePorts(char* serialnb,char* port_nb,int
port_way,char* port_type,char* bia,char* macadd,int first_time1,int
last_rows1,char* ErrMess); UC 20

int InsertSparePort(char* serialnb,char* port_nb,int port_way,char*
port_type,char* bia,char* macadd,int last_rows,char* ErrMess); UC 20

int InsertTestFunctionalDevice(char* location,char* ipaddressList,int
ipaddlen,char* ipnameList,int ipnamelen,char* subnetList,int
subnetlen,char* portnbList,int portnblen,char* portypeList,int
ptypelen,int* portwayList,int nb_ipadd,int last_rows,char* ErrMess); UC 20

int InsertMultipleBootImages(char* devicename,char* boot_image,char*
kernel_image_location,char* initrd_image_location,char*
physical_location,char* boot_protocol,int first_time1, int
last_rows1,char* ErrMess); UC 8, UC 11, UC 16

int InsertMultipleBoardCpnts(char* cpntname,char* cpnttype,int
replacable,char* motherboardname,char* serial_nb,char* hwtype,char*
responsible,char* comments,char* location,int first_time1,int
last_rows1,char* ErrMess); UC 28, UC 32, UC 34

int InsertMultipleMicroLinks(char* node_from,char* node_to,int
port_nbfrom,int port_nbto,char* link_type,int bidirectional_link_used,int
first_time1, int last_rows1,char* ErrMess); UC 28, UC 32

int InsertSubsystem(char *system_name,char* parent_sysname,char* ErrMess);
UC 31, UC 32, UC 33, UC 34

int InsertMultipleIPAliases(char* ipaddress,char* ipname,char* ipalias,int
first_time1,int last_rows1,char* ErrMess); UC 8, UC 11, UC 16

int InsertSimpleDeviceFunction(char *function_name,int last_rows,char*
ErrMess); UC 8, UC 16

/*************** update functions for inventory/history ****************/

int ReplaceFunctionalDevice(char* devicename,char* new_device_status,char*
new_location,char* user_comments,char* status_datechange,char*
serialnb_replaced,char* replace_date,char* ErrMess); UC 23, UC 24, UC 25,
UC 29,

int SetToTestUseStatus(char* devicename,char* user_comments,char*
status_change,char* serialnb_replaced,char* testboard_name,char*
replace_date,char* ErrMess); UC 26, UC 34

int ReplaceFunctionalBoardCpnt(char* cpntname,char* new_cpnt_status,char*
new_location,char* user_comments,char* status_datechange,char*
serialnb_replace,char* replace_date,char* ErrMess); UC 28

int SwapTwoDevices(char* functional_devicename1,char*
functional_devicename2,char* comments,char* ErrMess); UC 33

int UpdateHWDeviceStatus(char* serialnb,char* new_device_status,char*
new_location,char* user_comments,char* status_datechange,char*
functional_devicename,char* ErrMess); UC 23, UC 34

Appendices

 295

int UpdateHWBoardCpntStatus(char* serialnb,char* new_cpnt_status,char*
new_location,char* user_comments,char* status_datechange,char*
functional_cpntname,char* ErrMess); UC 28, UC 29

int UpdateMultiplePortStatuses(char* devicename,char* port_nb,int
port_way,char* port_type,int admin_status,int first_time1,int
last_rows1,char* ErrMess); UC 12

int UpdateMultipleDeviceNodeUsedByType(char* devicetype,int nodeused,int
devtype_given,int last_rows,char* ErrMess); UC 10

int UpdateMultipleDeviceNodeUsed(char* devicename,int nodeused,int
first_time1,int last_rows1,char* ErrMess); UC 10

int UpdateMultipleLkUsedLinks(char* node_from,char* node_to,char*
port_nbrfrom,char* port_nbrto,char* port_typefrom,char* port_typeto,int
lkused,int first_time1, int last_rows1,char* ErrMess); UC 13

/*************** delete functions ****************/

int DeleteIPAlias(char* ipalias,char* ErrMess); UC 16

int DeleteBootImage(char* devicename,char* ErrMess); UC 16

int DeleteHWDevice(char* serialnb,char* ErrMess); UC 16

int DeleteFunctionalDeviceType(char* devicetype,char* ErrMess); UC 16

int DeleteFunctionalDevice(int deviceid,char* ErrMess); UC 16

int DeleteLinkRow(int linkid,int macro_link,char* ErrorMessage); UC 16

int DeletePortRow(int portid,char* ErrMess); UC 16

int DeleteSystemName(char* sysname,char* ErrMess);

/*************update functions in case of mistype****************/
int UpdateSubsystemName(char* old_systemname,char* new_systemname,char*
ErrMess);

int UpdateMultiplePorts(char* devicename,char* port_nb,int port_way,char*
port_type,int speed,char* phy,int pxi_booting,int first_time1,int
last_rows1,char* ErrMess);

int UpdateMultipleAttributeMacIPs(char* ip_add,char* subnet_mask,char*
ipname,int first_time1,int last_rows1,char* ErrMess);

int UpdateMultipleIPAddresses(char* ip_add,char* oldip_add,int
first_time1,int last_rows1,char* ErrMess);

int UpdateMultipleCompositeLinkTypes(char* link_name,char *
simple_lk_list,int first_time1,int last_rows1,char* ErrMess);

int UpdateMultipleLinkTypeNames(char *old_link_name, char *link_name,int
first_time1,int last_rows1,char* ErrMess);

int UpdateMultipleLkInfoLinks(char* node_from,char* node_to,char*
port_nbrfrom,char* port_nbrto,char* port_typefrom,char* port_typeto,char*
link_information,int first_time1, int last_rows1,char* ErrMess);

Appendices

 296

int UpdateMultipleDeviceTypes(char* devicetype_old,char* devicetype,int
first_time1,int last_rows1,char* ErrMess);

int UpdateMultipleDeviceTypeAttributes(char* devicetype,char*
description,int nbrofinput,int nbrofoutput,char* rgbcolor,int
first_time1,int last_rows1,char* ErrMess);

int UpdateMultipleDTypeDevices(char* devicename,char* devicetype,int
first_time1,int last_rows1,char* ErrMess);

int UpdateMultipleDevNamesDevices(char* devicename_old,char* devicename,int
first_time1,int last_rows1,char* ErrMess);

int UpdateMultipleDeviceActive(char* devicename,int active,int
first_time1,int last_rows1,char* ErrMess);

int UpdateMultipleDeviceActiveByType(char* devicetype,int active,int
devtype_given,int last_rows,char* ErrMess);

int UpdateMultipleAttributesDevices(char* devicename,int node,int
promiscuous_mode,char* location,char* function_list,int first_time1,int
last_rows1,char* ErrMess); UC 10, UC 27

int UpdateMultipleLkTypeLinks(char* node_from,char* node_to,char*
port_nbrfrom,char* port_nbrto,char* port_typefrom,char* port_typeto,char*
link_type,int first_time1, int last_rows1,char* ErrMess);

int UpdateMultipleBidirectionalLinks(char* node_from,char* node_to,char*
port_nbrfrom,char* port_typefrom,char* port_nbrto,char* port_typeto,int
bidirectional_link_used,int first_time1, int last_rows1,char* ErrMess);

int UpdateDeviceFunctionName(char* old_function_name,char*
new_function_name,char* ErrMess);

int UpdateHWSerialNB(char* old_serialnb,char* new_serialnb,char* ErrMess);

int UpdateIPalias(char* old_ipalias,char* new_ipalias,char* ErrMess);

int UpdateMultipleDeviceTypeSystemList(char* devicetype,char*
new_systemList,int first_time1,int last_rows1,char* ErrMess);

int UpdateBootImage(char* devicename,char* boot_image,char*
kernel_image_location,char* initrd_image_location,char*
physical_location,char* boot_protocol,char* ErrMess);

int UpdateMultipleDeviceSystemList(char* devicename,char*
new_systemList,int first_time1,int last_rows1,char* ErrMess);

Appendices

 297

Appendix G Example of a select query using OCI

To perform a SQL statement, the following common steps (quite similar to JDBC, ODBC or
PERL DBI) are required:

• use of OCIHandleAlloc to allocate a handle.
• use of OCIStmtPrepare to prepare the query. A query can consists of a block of

statements or a call to PL/SQL functions/procedures.
• use of OCIBindByName if there are some bind variables;
• use of OCIStmtExecute to execute the statement;
• use of OCIDefineByPos to define where to put the content of a column. To be used only

for SELECT statement (not used in Perl DBI or ODBC);
• use of OCIStmtFetch2 to fetch the results of the statement (only for SELECT statement).

There is an example of a C code below. It returns the row of a given devicetype. Functions
provided by OCI are in bold.
/**
******/
// Author: L.Abadie
// Code compatible with version: v3.2 of the confDB.lib
// Get the row associated with the given device type
/**
******/

// allocate the handle (memory)
status =OCIHandleAlloc (ociEnv, (void**)&stmthp, OCI_HTYPE_STMT , 0, 0);
if(status!=OCI_SUCCESS)
{
 rescode=ShowErrors (status, ociError, "OCIStmtHAndleStmt unsuccessful");
 if(ociError!=0)
 OCIReportError(ociError,appliName,ErrorMessage,1);
 else
 GetErrorMess(appliName,"NOT CONNECTED TO ANY DB",ErrorMessage,1);
 return -1;
}
else
{
 char selectdevtype[1000];
 //write the select statement
 sprintf(selectdevtype,"select devicetype,devicetypeid,description,rgbcolor
from %s where devicetype=:dtype ",DEVICETYPE_TABLE);
 //prepare the statement
 status=OCIStmtPrepare(stmthp, ociError, (text*) selectdevtype,(ub4)
strlen(selectdevtype),(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
}

if(status!=OCI_SUCCESS)
{
 if(rescode==0)
 {
 rescode=ShowErrors (status, ociError, "OCIStmtPrepare unsuccessful");
 }
}
else
 //make the binding variable
 status=OCIBindByName(stmthp, &bnd1p, ociError,(text*)":dtype",-1,(dvoid*)
devitype,strlen(devitype)+1, SQLT_STR, (dvoid *) 0,(ub2 *) 0, (ub2*) 0, (ub4) 0,
(ub4 *) 0, OCI_DEFAULT);

if(status!=OCI_SUCCESS)
{
 if(rescode==0)

Appendices

 298

 {
 rescode=ShowErrors (status, ociError, "OCIBindByPos unsuccessful");
 }
}
else
 //execute the statement
 status=OCIStmtExecute(ociHdbc, stmthp, ociError, 0, 0,(OCISnapshot *) 0,
(OCISnapshot *) 0, OCI_DEFAULT);

if(status!=OCI_SUCCESS)
{
 if(rescode==0)
 {

 rescode=ShowErrors (status, ociError, "OCIAttrGet2 unsuccessful");
 }
}
else
{
 //define the column to associate each of them with a C variable
 status =OCIDefineByPos(stmthp, &def[0], ociError,1, (ub1 *)
(devicetype_temp), devtypelen + 1,SQLT_STR, (dvoid *)&dtype_null,(ub2 *) 0,0,
OCI_DEFAULT);
}
….

if(status!=OCI_SUCCESS)
{
 if(rescode==0)
 {
 rescode=ShowErrors (status, ociError, "OCIDefineByPos4 unsuccessful");
 }
}
else //fetch the result : we get one row one by one
 status =OCIStmtFetch2(stmthp,ociError, 1, OCI_FETCH_NEXT,1, OCI_DEFAULT);

In parallel, there are other OCI functions to tune SQL statements such as the prefetch size
memory by using OCIAttrSet (stmthp, OCI_HTYPE_STMT, &prefetch_rows, 0,
OCI_ATTR_PREFETCH_ROWS, ociError). Prefetch_rows sets the number of rows which
should be returned in one round trip. The typical value is between 1000 and 10000. It
corresponds to the number of round trip (between the client and the DB server) and it should
be set according to the network load average and the type of query. For instance, if a query
will never return more than 1000 rows, there is no point in setting this parameter to 10,000.
The library can be used on Linux and Windows.

Appendices

 299

Appendix H The PVSS CIC_DB_lib interface

/**
******/
// Author: L.Abadie
// Code compatible with version: v3.2 of the CIC_DB_lib
//PVSS interface
/**
******/

/***/
BaseExternHdl* newExternHdl(BaseExternHdl* nextHdl){
 static FunctionListRecEx funcs[]={

FunctionListRecEx(TEXT_VAR, "PVSSGetDeviceTypeRow", "(string
dtype)",true,reinterpret_cast<void (*)()>(PVSSGetDeviceTypeRow),
TextVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSDBDeconnexion", "(string
ErrMess)",true,reinterpret_cast<void (*)()>(PVSSDBDeconnexion),
IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSDBConnexion", "(string server,string
usr,string pwd,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSDBConnexion), IntegerVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetDeviceRow_devicename", "(string
dname)",true,reinterpret_cast<void (*)()>(PVSSGetDeviceRow_devicename),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetDeviceName_deviceid", "(int
deviceid)",true,reinterpret_cast<void (*)()>(PVSSGetDeviceName_deviceid),
TextVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSGetDeviceID_devicename", "(string
devicename,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetDeviceID_devicename), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetDeviceRow_devid", "(int
dID)",true,reinterpret_cast<void (*)()>(PVSSGetDeviceRow_devid),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetPortRow_devid", "(int devID, string
pt_nb,int pway, string ptype)",true,reinterpret_cast<void
(*)()>(PVSSGetPortRow_devid), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetPortRow_pid", "(int
dID)",true,reinterpret_cast<void (*)()>(PVSSGetPortRow_pid), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetMacroConnectivityRow_node", "(int
nodeID, string ptnb,int pway,string ptype)",true,reinterpret_cast<void
(*)()>(PVSSGetMacroConnectivityRow_node), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetMacroConnectivityRow_lkid", "(int
lkID)",true,reinterpret_cast<void (*)()>(PVSSGetMacroConnectivityRow_lkid),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetIPInfoRow", "(string
ip_add)",true,reinterpret_cast<void (*)()>(PVSSGetIPInfoRow), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetLkTypeRow_lkname", "(string
lkname)",true,reinterpret_cast<void (*)()>(PVSSGetLkTypeRow_lkname),
TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetDeviceIDsPerType", "(string
dtype,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetDeviceIDsPerType), IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSGetDeviceNamesPerType", "(string
dtype,dyn_string devnames,dyn_int devids)",true,reinterpret_cast<void
(*)()>(PVSSGetDeviceNamesPerType), IntegerVar(0)),

Appendices

 300

FunctionListRecEx(DYN_VAR, "PVSSGetFreeDeviceNamesPerType", "(string
dtype)",true,reinterpret_cast<void (*)()>(PVSSGetFreeDeviceNamesPerType),
TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetDestinationNamePerDevPort", "(string
devname,string ptnb,string ptype)",true,reinterpret_cast<void
(*)()>(PVSSGetDestinationNamePerDevPort), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetLkFromDevID", "(int node_from,string
ErrMess)",true,reinterpret_cast<void (*)()>(PVSSGetLkFromDevID),
IntegerVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetLkToDevID", "(int node_to,string
ErrMess)",true,reinterpret_cast<void (*)()>(PVSSGetLkToDevID),
IntegerVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetPortIDPerDevID", "(int devid,string
ErrMess)",true,reinterpret_cast<void (*)()>(PVSSGetPortIDPerDevID),
IntegerVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetMacIPAddPerDevID", "(int
devid)",true,reinterpret_cast<void (*)()>(PVSSGetMacIPAddPerDevID),
IntegerVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetLkTypeRow_lknb", "(int
lktype_nb)",true,reinterpret_cast<void (*)()>(PVSSGetLkTypeRow_lknb),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertDeviceType", "(string sysname,string
dtype,int nbinput,int nboutput,string description,string rgbcolor,int
last_rows)",true,reinterpret_cast<void (*)()>(PVSSInsertDeviceType),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertFunctionalDevice", "(string
sysname,string dname,string dtype,int node,int promiscuous_mode,string
serialnb, string hwtype,string responsible,string location,string
comments,string function_list,int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertFunctionalDevice), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertPort", "(string dname,string
pt_nb,string pt_type,int pway,string bia,string ipname,string ipadd,string
subnet,string macadd,int pxibooting,int speed, string phy,int
last_rows)",true,reinterpret_cast<void (*)()>(PVSSInsertPort), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertSimpleLinkType", "(string
lktype_name,int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertSimpleLinkType), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertMacroLink", "(string sysname,string
node_from,string node_to,string port_from,int port_typefrom,string
port_to,int port_typeto ,string link_type_name ,int
bidirectional_link,string link_info,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertMacroLink),TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertCompositeLinkType", "(string
sysname,string lktype_name,dyn_string lktype_list,int first_time,int
last_rows)",true,reinterpret_cast<void (*)()>(PVSSInsertCompositeLinkType),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertMultipleDeviceTypes", "(string
sysname,string dtype,int nbinput,int nboutput,string description,string
rgbcolor,int first_time,int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultipleDeviceTypes), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertMultipleFunctionalDevices", "(string
sysname,string dname,string dtype,int node,int promiscuous_mode,string
serialnb, string hwtype,string responsible,string location,string
comments,string function_list,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultipleFunctionalDevices), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertMultiplePorts", "(string
dname,string pt_nb,string pt_type,int pway,string bia,string ipname,string
ipadd,string subnet,string macadd,int pxibooting,int speed, string phy,int

Appendices

 301

first_time,int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultiplePorts), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertMultipleSimpleLinkTypes", "(string
lktype_name,int first_time,int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultipleSimpleLinkTypes), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertMultipleMacroLinks", "(string
node_from,string node_to,string port_from,int port_typefrom,string
port_to,int port_typeto,string link_type_name ,int
bidirectional_link,string link_info,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultipleMacroLinks),TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertMultipleCompositeLinkTypes",
"(string lktype_name,dyn_string lktype_list,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultipleCompositeLinkTypes), TextVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSCreateTableSchema","(string
ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSCreateTableSchema),IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSDropTableSchema","(string
ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSDropTableSchema),IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSCreateRoutingTable","(string
devicename,int roundtrip,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSCreateRoutingTable),IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSCreateDestinationTable","(string
devicename,int roundtrip,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSCreateDestinationTable),IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSGetConnectivityBetweenDevices","(string
dfrom, string dto,dyn_string nfrom_list, dyn_string pfrom_list,dyn_int
pwayfrom_list,dyn_string nto_list,dyn_string pto_list, dyn_int
pwayto_list, dyn_int pid_list,dyn_string link_info,int
reload_connectivity,delete_connectivity,string
ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetConnectivityBetweenDevices), IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR,
"PVSSGetConnOutBetweenDeviceDeviceType","(string dfrom, string dto,int
devtype_given, dyn_string pfrom_list,int reload_connectivity,int
delete_connectivity,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetConnOutBetweenDeviceDeviceType), IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR,
"PVSSGetDetailedConnBetweenDeviceDevType","(string dfrom, string dto,int
dto_typegiven,dyn_string nfrom_list,dyn_string pfrom_list,dyn_int
pwayfrom_list, dyn_string nto_list, dyn_string pto_list, dyn_int
pwayto_list, dyn_int pid_list, dyn_int lkpos_list,dyn_string
link_info,int reload_connectivity,int delete_connectivity,string
ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetDetailedConnBetweenDeviceDevType), IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR,
"PVSSGetDetailedConnBetweenDeviceDevType_plsql","(string dfrom, string
dto,int dto_typegiven,dyn_string nfrom_list,dyn_string pfrom_list,dyn_int
pwayfrom_list, dyn_string nto_list, dyn_string pto_list, dyn_int
pwayto_list, dyn_int pid_list, dyn_int lkpos_list,dyn_string
link_info,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetDetailedConnBetweenDeviceDevType_plsql), IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR,
"PVSSGetDetailedConnectivityBetweenDevices","(string dfrom, string
dto,dyn_string nfrom_list, dyn_string nto_list, dyn_string
pfrom_list,dyn_int pwayfrom_list, dyn_string pto_list,dyn_int
pwayto_list, dyn_int pid_list, dyn_int lkpos_list,dyn_string
link_info,int reload_connectivity,int delete_connectivity,string

Appendices

 302

ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetDetailedConnectivityBetweenDevices), IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR,
"PVSSGetDetailedConnectivityBetweenDevices_plsql","(string dfrom, string
dto,dyn_string nfrom_list, dyn_string nto_list, dyn_string
pfrom_list,dyn_int pwayfrom_list, dyn_string pto_list,dyn_int
pwayto_list, dyn_int pid_list, dyn_int lkpos_list,dyn_string
link_info,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetDetailedConnectivityBetweenDevices_plsql), IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSUpdateMultipleDeviceActive","(string
devicename,int active, int first_rows,int last_rows, string
errMess)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDeviceActive),IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR,
"PVSSUpdateMultipleDeviceActiveByType","(string devicename,int active,int
devtype_given,int last_rows, string errMess)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDeviceActiveByType),IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSGetStatusSubsystem","(dyn_string
subsytemname,dyn_int SubsystemStatus)",true,reinterpret_cast<void
(*)()>(PVSSGetStatusSubsystem), IntegerVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetBoardCpntRow_cpntname","(string
cpntname)",true,reinterpret_cast<void (*)()>(PVSSGetBoardCpntRow_cpntname),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetHWCpntRow_serialnb","(string
serialnb)",true,reinterpret_cast<void (*)()>(PVSSGetHWCpntRow_serialnb),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetBoardCpntRow_cpntid","(int
cpntid)",true,reinterpret_cast<void
(*)()>(PVSSGetBoardCpntRow_cpntid),TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetHWCpntRow_snbid","(int
snbtid)",true,reinterpret_cast<void
(*)()>(PVSSGetHWCpntRow_snbid),TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetMicroConnectivityRow_lkid","(int
lkid)",true,reinterpret_cast<void
(*)()>(PVSSGetMicroConnectivityRow_lkid),TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetMicroConnectivityRow_node","(int
nodeID,int ptnb,int way)",true,reinterpret_cast<void
(*)()>(PVSSGetMicroConnectivityRow_node),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetSpareHWCpntPerType","(string
hwtype)",true,reinterpret_cast<void
(*)()>(PVSSGetSpareHWCpntPerType),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetSpareHWPerType","(string
hwtype)",true,reinterpret_cast<void
(*)()>(PVSSGetSpareHWPerType),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetSpareHWCpntPerLocation","(string
location)",true,reinterpret_cast<void
(*)()>(PVSSGetSpareHWCpntPerLocation),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetDeviceNamesPerLocation","(string
location)",true,reinterpret_cast<void
(*)()>(PVSSGetDeviceNamesPerLocation),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetCpntNamesPerBoard","(string
location)",true,reinterpret_cast<void
(*)()>(PVSSGetCpntNamesPerBoard),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetMicroLkToCpntID","(int cpntid_to,int
motherboard,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetMicroLkToCpntID),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetMicroLkFromCpntID","(int cpntid_from,int
motherboard,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetMicroLkToCpntID),TextVar(0)),

Appendices

 303

FunctionListRecEx(DYN_VAR, "PVSSGetBoardCpntPerType","(string
cpnttype)",true,reinterpret_cast<void
(*)()>(PVSSGetBoardCpntPerType),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSInsertMultipleBoardCpnts","(string
cpntname,string cpnttype,int replacable,string motherboardname,string
serialnb,string hwtype,string responsible,string location,string
comments,int first, int last)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultipleBoardCpnts),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSInsertMultipleSpareDevices","(string
hwname,string hwtype,string serialnb,string responsible,string
location,string comments,int first, int last)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultipleSpareDevices),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSInsertSpareDevice","(string hwname,string
hwtype,string serialnb,string responsible,string location,string comments,
int last)",true,reinterpret_cast<void
(*)()>(PVSSInsertSpareDevice),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSInsertTestFunctionalDevice","(string
location,dyn_string ipaddList,dyn_string ipnameList,dyn_string
subnetList,dyn_string portnbList,dyn_string port_typeList,dyn_int
port_wayList, int last)",true,reinterpret_cast<void
(*)()>(PVSSInsertTestFunctionalDevice),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSUpdateMultiplePorts","(string dname,string
pt_nb,string pt_type,int pway,int pxibooting,int speed, string phy,int
first_time,int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultiplePorts),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSUpdateMultiplePortStatuses","(string
dname,string pt_nb,string pt_type,int admin_status,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultiplePortStatuses),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSUpdateMultipleAttributeMacIPs","(string
ipadd,string subnet_mask,string ipname,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleAttributeMacIPs),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSUpdateMultipleIPAddresses","(string
ipadd,string old_ipadd,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleAttributeMacIPs),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSUpdateMultipleCompositeLinkTypes","(string
link_name,string simple_linkList,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleCompositeLinkTypes),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSUpdateMultipleLinkTypeNames","(string
oldlink_name,string oldlink_name,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleLinkTypeNames),TextVar(0)),
FunctionListRecEx(DYN_VAR,
"PVSSUpdateMultipleDeviceTypeAttributes","(string devtype,string
description,int nbinput,int nboutput,string rgbcolor,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDeviceTypeAttributes),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSUpdateMultipleDeviceTypes","(string
old_devtype,string devtype,int first_time,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDeviceTypes),TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetMacroConnectivityRow_nodename",
"(string nodename, string ptnb,int pway,string
ptype)",true,reinterpret_cast<void
(*)()>(PVSSGetMacroConnectivityRow_nodename), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetLkTypeDecomposition_lknb", "(int
linktype_nb)",true,reinterpret_cast<void
(*)()>(PVSSGetLkTypeDecomposition_lknb), TextVar(0)),

Appendices

 304

FunctionListRecEx(TEXT_VAR, "PVSSInsertMultipleSparePorts", "(string
serialnb,string pt_nb,string pt_type,int pway,string bia,string macadd,int
first_time,int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultipleSparePorts), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertSparePort", "(string serialnb,string
pt_nb,string pt_type,int pway,string bia,string macadd,int
last_rows)",true,reinterpret_cast<void (*)()>(PVSSInsertSparePort),
TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetSpareHWPerLocation","(string
location)",true,reinterpret_cast<void
(*)()>(PVSSGetSpareHWPerLocation),TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetFunctionalDeviceStatus", "(string
dname)",true,reinterpret_cast<void (*)()>(PVSSGetFunctionalDeviceStatus),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetHWDeviceRow_serialnb", "(string
serialnb)",true,reinterpret_cast<void (*)()>(PVSSGetHWDeviceRow_serialnb),
TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetFunctionalDeviceByStatus", "(string
system_name,string device_status)",true,reinterpret_cast<void
(*)()>(PVSSGetFunctionalDeviceByStatus), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetHWDeviceStatus", "(string
serialnb)",true,reinterpret_cast<void (*)()>(PVSSGetHWDeviceStatus),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetHWLastFunctionalDevice", "(string
serialnb)",true,reinterpret_cast<void
(*)()>(PVSSGetHWLastFunctionalDevice), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetFunctionalDeviceLastHW", "(string
functional_name)",true,reinterpret_cast<void
(*)()>(PVSSGetFunctionalDeviceLastHW), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSDeleteLinkRow", "(int linkid,int
macro_link)",true,reinterpret_cast<void (*)()>(PVSSDeleteLinkRow),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSSetToTestUseStatus", "(string
functional_name,string user_comments,string status_datechange,string
serialnb_replacement,string testdevice_name,string
replace_date)",true,reinterpret_cast<void (*)()>(PVSSSetToTestUseStatus),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateHWBoardCpntStatus", "(string
serialnb,string new_status,string new_location,string user_comments,string
status_datechange,string functional_cpntname)",true,reinterpret_cast<void
(*)()>(PVSSUpdateHWBoardCpntStatus), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSReplaceFunctionalBoardCpnt", "(string
cpnt_name,string new_status,string new_location,string user_comments,string
status_datechange,string serialnb_replacement,string
replace_date)",true,reinterpret_cast<void
(*)()>(PVSSReplaceFunctionalBoardCpnt), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSReplaceFunctionalDevice", "(string
functional_name,string new_status,string new_location,string
user_comments,string status_datechange,string serialnb_replacement,string
replace_date)",true,reinterpret_cast<void
(*)()>(PVSSReplaceFunctionalDevice), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleBidrectionalLinks", "(string
node_from,string node_to,string portnb_from,string portnb_to,string
portype_from,string portype_to,int bidirectional_link,int first_rows,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleBidrectionalLinks), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleLkInfoLinks", "(string
node_from,string node_to,string portnb_from,string portnb_to,string
portype_from,string portype_to,string link_info,int first_rows,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleLkInfoLinks), TextVar(0)),

Appendices

 305

FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleLkUsedLinks", "(string
node_from,string node_to,string portnb_from,string portnb_to,string
portype_from,string portype_to,int lkused,int first_rows,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleLkUsedLinks), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleLkTypeLinks", "(string
node_from,string node_to,string portnb_from,string portnb_to,string
portype_from,string portype_to,string link_type,int first_rows,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleLkUsedLinks), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleAttributesDevices", "(string
devname,int node,int promiscuous_mode,string location, string
function_list,int first_rows,int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleAttributesDevices), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleDeviceSystemList", "(string
devname,string new_systemList,int first_rows,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDeviceSystemList), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleDevNamesDevices", "(string
old_devname,string devname,int first_rows,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDevNamesDevices), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleDTypeDevices", "(string
devname,string devtype,int first_rows,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDTypeDevices), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleDeviceNodeUsed", "(string
devname,int nodeused,int first_rows,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDeviceNodeUsed), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateMultipleDeviceNodeUsedByType",
"(string devtype,int nodeused,int devtype_given,int first_rows,int
last_rows)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDeviceNodeUsedByType), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetHistoryOfFunctionalBoardCpntName",
"(string functional_cpntname,string min_date,string
max_date)",true,reinterpret_cast<void
(*)()>(PVSSGetHistoryOfFunctionalBoardCpntName), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetHistoryOfHWBoardCpnt", "(string
serial_nb,int snbid,string min_date,string
max_date)",true,reinterpret_cast<void (*)()>(PVSSGetHistoryOfHWBoardCpnt),
TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetHistoryOfFunctionalDevice", "(string
functional_name,string min_date,string
max_date)",true,reinterpret_cast<void
(*)()>(PVSSGetHistoryOfFunctionalDevice), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetHistoryOfHWDevice", "(string
serial_nb,string min_date,string max_date)",true,reinterpret_cast<void
(*)()>(PVSSGetHistoryOfHWDevice), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetCpntName_cpntid", "(int
cpntid)",true,reinterpret_cast<void (*)()>(PVSSGetCpntName_cpntid),
TextVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSGetCpntID_cpntname", "(string
cpntname,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetCpntID_cpntname), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetFunctionalBoardCpntNameLastHW",
"(string functional_name)",true,reinterpret_cast<void
(*)()>(PVSSGetFunctionalBoardCpntNameLastHW), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetFunctionalBoardCpntStatus", "(string
cpntname)",true,reinterpret_cast<void
(*)()>(PVSSGetFunctionalBoardCpntStatus), TextVar(0)),

Appendices

 306

FunctionListRecEx(DYN_VAR, "PVSSGetFunctionalDeviceByStatus", "(string
systemname,string device_status)",true,reinterpret_cast<void
(*)()>(PVSSGetFunctionalDeviceByStatus), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetHWBoardCpntByStatus", "(string
cpnt_status)",true,reinterpret_cast<void
(*)()>(PVSSGetHWBoardCpntByStatus), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetHWDeviceByStatus", "(string
systemname,string device_status)",true,reinterpret_cast<void
(*)()>(PVSSGetHWDeviceByStatus), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetFunctionalDeviceLastHW", "(string
functional_name)",true,reinterpret_cast<void
(*)()>(PVSSGetFunctionalDeviceLastHW), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetFunctionalDeviceStatus", "(string
dname)",true,reinterpret_cast<void (*)()>(PVSSGetFunctionalDeviceStatus),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetHWBoardCpntStatus", "(string
serialnb,int snbid)",true,reinterpret_cast<void
(*)()>(PVSSGetHWBoardCpntStatus), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetHWDeviceStatus", "(string
dname)",true,reinterpret_cast<void (*)()>(PVSSGetHWDeviceStatus),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetHWLastFunctionalBoardCpntName",
"(string hw_serialnb,int hw_snbid)",true,reinterpret_cast<void
(*)()>(PVSSGetHWLastFunctionalBoardCpntName), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetHWLastFunctionalDevice", "(string
functional_name)",true,reinterpret_cast<void
(*)()>(PVSSGetHWLastFunctionalDevice), TextVar(0)),
FunctionListRecEx(INTEGER_VAR,
"PVSSGetMicroConnectBetweenBoardCpntAndMotherBoard", "(string cpnt_from,int
mboard_pid,dyn_string nfrom_list,string lastlkfrom_list,string
lastlkto_list,dyn_string nto_list,dyn_int pid_list,dyn_int
lkpos_list,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSGetMicroConnectBetweenBoardCpntAndMotherBoard), IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSGetMicroConnectFromPortid", "(int
mboardportid_from,int mboardportid_to,string cpntname,dyn_string
nfrom_list,string lastlkfrom_list,string lastlkto_list,dyn_string
nto_list,dyn_int pid_list,dyn_int lkpos_list,string
ErrMess)",true,reinterpret_cast<void (*)()>(PVSSGetMicroConnectFromPortid),
IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSGetMicroConnectToCpntType", "(int
mboardportid_from,int cpnttype_given,string cpnttype,dyn_string
nfrom_list,string lastlkfrom_list,string lastlkto_list,dyn_string
nto_list,dyn_int pid_list,dyn_int lkpos_list,string
ErrMess)",true,reinterpret_cast<void (*)()>(PVSSGetMicroConnectToCpntType),
IntegerVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSSwapTwoDevices", "(string
functional_devname1,string functional_devname2,string
comments)",true,reinterpret_cast<void (*)()>(PVSSSwapTwoDevices),
TextVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSGetPortPerSubsystem", "(string
dfrom,string system_name,dyn_string pfrom_list,string
ErrMess)",true,reinterpret_cast<void (*)()>(PVSSGetPortPerSubsystem),
IntegerVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSLoadRoutingTable", "(string
switch_name,dyn_string destinname_list,dyn_string nextport_list,dyn_string
ipnext_list,dyn_string ipdestin_list,dyn_string subnetnext_list,dyn_string
macaddnext_list,string ErrMess)",true,reinterpret_cast<void
(*)()>(PVSSLoadRoutingTable), IntegerVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSDeletePortRow", "(int
portid)",true,reinterpret_cast<void (*)()>(PVSSDeletePortRow), TextVar(0)),

Appendices

 307

FunctionListRecEx(TEXT_VAR, "PVSSInsertMultipleBootImages", "(string
devicename,string boot_image,string kernel_image_location,string
initrd_image_location,string physical_location,string boot_protocol,int
first_rows, int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertMultipleBootImages), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSDeleteBootImage", "(stirng
devicename)",true,reinterpret_cast<void (*)()>(PVSSDeleteBootImage),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateBootImage", "(string
devicename,string boot_image,string kernel_image_location,string
initrd_image_location,string physical_location,string
boot_protocol)",true,reinterpret_cast<void (*)()>(PVSSUpdateBootImage),
TextVar(0)),
FunctionListRecEx(INTEGER_VAR, "PVSSGetPortID_portinfo", "(int
deviceid,string port_nb,string port_type,int port_way, string
ErrMess)",true,reinterpret_cast<void (*)()>(PVSSGetPortID_portinfo),
IntegerVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertSimpleDeviceFunction", "(string
function_name,int last_rows)",true,reinterpret_cast<void
(*)()>(PVSSInsertSimpleDeviceFunction), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateDeviceFunctionName", "(string
old_function_name,string new_function_name)",true,reinterpret_cast<void
(*)()>(PVSSUpdateDeviceFunctionName), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateHWSerialNB", "(string
old_serialnb,string new_serialnb)",true,reinterpret_cast<void
(*)()>(PVSSUpdateHWSerialNB), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetDeviceNamesPerFunction", "(string
function_name)",true,reinterpret_cast<void
(*)()>(PVSSGetDeviceNamesPerFunction), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertMultipleIPAliases", "(string
ipaddress, string ipname, string ipalias, int first_time,int last_rows
)",true,reinterpret_cast<void (*)()>(PVSSInsertMultipleIPAliases),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateIPalias", "(string
old_ipalias,string new_ipalias)",true,reinterpret_cast<void
(*)()>(PVSSUpdateIPalias), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetIPAliasesPerIPName", "(string ipname
)",true,reinterpret_cast<void (*)()>(PVSSGetIPAliasesPerIPName),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetIPAliasRow", "(string ipalias
)",true,reinterpret_cast<void (*)()>(PVSSGetIPAliasRow), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSDeleteIPAlias", "(string ipalias
)",true,reinterpret_cast<void (*)()>(PVSSDeleteIPAlias), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetLkIDsPerLkInfo", "(string lkinfo,string
errmess)",true,reinterpret_cast<void (*)()>(PVSSGetLkIDsPerLkInfo),
TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSUpdateMultipleDeviceTypeSystemList",
"(string devtypename,string new_systemList, int first_rows,int last_rows
)",true,reinterpret_cast<void
(*)()>(PVSSUpdateMultipleDeviceTypeSystemList), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetAvailableFunctions", "(int dummy
)",true,reinterpret_cast<void (*)()>(PVSSGetAvailableFunctions),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSLoadDeviceTypeTable", "(string systemname,
dyn_string devicetype_name,dyn_int devicetypeid
)",true,reinterpret_cast<void (*)()>(PVSSLoadDeviceTypeTable), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSDeleteFunctionalDeviceType", "(string
devicetype)",true,reinterpret_cast<void
(*)()>(PVSSDeleteFunctionalDeviceType), TextVar(0)),

Appendices

 308

FunctionListRecEx(TEXT_VAR, "PVSSDeleteFunctionalDevice", "(int deviceid
)",true,reinterpret_cast<void (*)()>(PVSSDeleteFunctionalDevice),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSDeleteHWDevice", "(string serialnb
)",true,reinterpret_cast<void (*)()>(PVSSDeleteHWDevice), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSDeleteSystemName", "(string system_name
)",true,reinterpret_cast<void (*)()>(PVSSDeleteSystemName), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSUpdateSubsystemName", "(string
old_systemname,string new_systemname)",true,reinterpret_cast<void
(*)()>(PVSSUpdateSubsystemName), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSInsertSubsystem", "(string
system_name,string parent_name)",true,reinterpret_cast<void
(*)()>(PVSSInsertSubsystem), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetListOfSubsystems", "(int dummy
)",true,reinterpret_cast<void (*)()>(PVSSGetListOfSubsystems), TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetSpareHWTypeList", "(int dummy
)",true,reinterpret_cast<void (*)()>(PVSSGetSpareHWTypeList), TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetSparePortRow_snb","(string snb, string
ptnb,int port_way,string port_type)",true,reinterpret_cast<void
(*)()>(PVSSGetSparePortRow_snb),TextVar(0)),
FunctionListRecEx(DYN_VAR, "PVSSGetPortInfoPerSpare","(string
serialnb)",true,reinterpret_cast<void (*)()>(PVSSGetPortInfoPerSpare),
TextVar(0)),
FunctionListRecEx(TEXT_VAR, "PVSSGetBootImageRow_devicename", "(string
devicename)",true,reinterpret_cast<void
(*)()>(PVSSGetBootImageRow_devicename), IntegerVar(0)),
};

Appendices

 309

Appendix I The CICDB class (for the Python CIC_DB_lib)

/**
******/
// Author: L.Abadie
// Code compatible with version: v3.2 of the CIC_DB_lib
// CONFDB class.
/**
********************/

class CONFDB
{
private:
 string _dbname;
 string _login;
 string _passwd;

public:

CONFDB(string dbname,string login,string passwd);
~CONFDB();
int PyDBConnexion() ;
 //int PyDBConnexion(string dbname,string login,string passwd);
int PyDBDeconnexion() ;
string PyGetDeviceTypeRow(string devitype) ;
string PyGetDeviceRow_devicename(string deviname) ;
string PyGetDeviceRow_deviceid(int devid) ;
string PyGetPortRow_pid(int pID) ;
string PyGetPortRow_devid(int devid,string port_nb,int port_way,string
port_type) ;
string PyGetMacroConnectivityRow_lkid(int lkid) ;
string PyGetMacroConnectivityRow_node(int nodeid,string port_nb,int
way_given,string port_type) ;
string PyGetIPInfoRow(string IPadd) ;
string PyGetLkTypeRow_lkname(string lname) ;
string PyGetLkTypeRow_lknb(int lknb) ;
vector<int> PyGetPortIDPerDevID(int dID) ;
vector<string> PyGetDeviceNamesPerType(string dtype) ;
vector<string> PyGetMacIPAddPerDevID(int dID) ;
vector<int> PyGetLkToDevID(int nto) ;
vector<int> PyGetLkFromDevID(int nfrom) ;
vector<int> PyGetDeviceIDsPerType(string dtype) ;
string PyInsertPort(string devname,string ptnb,string port_type,int
port_way,string bia,string ipname,string ipadd,string subnet,string
macadd,vector<int> param_list, string phy,int last) ;
string PyInsertMultiplePorts(string devname,string ptnb,int port_way,string
port_type,string bia,string ipname,string ipadd,string subnet,string
macadd,vector<int> param_list, string phy,int first,int last) ;
string PyInsertMultipleMacroLinks(string nfrom,string nto,string
pfrom,string pto,string port_typefrom,string port_typeto,string lk_type
,int bidirectional,string link_info,int first,int last) ;
string PyInsertMultipleCompositeLinkTypes(string lktype,string
lktype_list_concan,int first,int last) ;
string PyInsertMultipleSimpleLinkTypes(string lktype,int first,int last) ;
string PyInsertMultipleDeviceTypes(string sysname,string devtype,int
nb_in,int nb_out,string devdescr,string rgbcolor,int first,int last) ;
string PyInsertMacroLink(string nfrom,string nto,string pfrom,string
pto,string port_typefrom,string port_typeto,string lk_type ,int
bidirectional,string link_info,int last) ;

Appendices

 310

string PyInsertCompositeLinkType(string lktype,string
lktype_list_concan,int last) ;
string PyInsertDeviceType(string sysname,string devtype,int nb_in,int
nb_out,string devdescr,string rgbcolor,int last) ;
string PyInsertSimpleLinkType(string lktype,int last) ;
vector<string> PyGetConnOutBetweenDeviceDeviceType(string nfrom,string
nto,int nto_dtype,int reload_connectivity,int delete_connectivity) ;
vector<string> PyGetDetailedConnectivityBetweenDevices(string nfrom,string
nto,int reload_connectivity,int delete_connectivity) ;
int PyCreateTableSchema() ;
vector<string> PyGetConnectivityBetweenDevices(string nfrom,string nto,int
reload_connectivity,int delete_connectivity) ;
vector<string> PyGetDestinationNamePerDevPort(string devtype,string
port_nb,string port_type) ;
int PyGetDeviceID_devicename(string devname) ;
string PyGetDeviceName_deviceid(int devID) ;
vector<string> PyGetDetailedConnBetweenDeviceDevType(string nfrom,string
nto,int dtype_given,int reload_connectivity,int delete_connectivity) ;
int PyDropTableSchema() ;
vector<string> PyGetFreeDeviceNamesPerType(string dtype) ;
int PyCreateDestinationTable(string dname,int roundtrip) ;
int PyCreateRoutingTable(string devname, int roundtrip) ;
vector<string> PyGetAllPathsPerDevice(string systemname,string
devicename,int reload_connectivity,int delete_connectivity) ;
vector<string> PyMatchDeviceIDDeviceName (string systemname) ;
vector<string> PyLoadConnectivityTable (string systemname) ;
vector<string> PyLoadDeviceTypeTable (string systemname) ;
vector<string> PyLoadLinkTypeTable () ;
string PyUpdateMultiplePorts(string devicename, string port_nb, int
port_way,string port_type,int speed,string phy, int pxi_booting,int
first_time1,int last_rows1);
string PyUpdateMultipleAttributeMacIPs(string ip_add,string
subnet_mask,string ipname,int first_time1,int last_rows1);
string PyUpdateMultipleIPAddresses(string ip_add,string oldip_add,int
first_time1,int last_rows1);
string PyUpdateMultipleCompositeLinkTypes(string link_name,string
simple_lk_list,int first_time1,int last_rows1);
string PyUpdateMultipleLinkTypeNames(string old_link_name, string
link_name,int first_time1,int last_rows1);
string PyUpdateMultipleDeviceTypeAttributes(string devicetype,string
description,int nbrofinput,int nbrofoutput,string rgbcolor,int
first_time1,int last_rows1);
string PyUpdateMultipleDeviceTypes(string devicetype_old,string
devicetype,int first_time1,int last_rows1);
string PyUpdateMultipleDevNamesDevices(string devicename_old,string
devicename,int first_time1,int last_rows1);
string PyUpdateMultipleBidirectionalLinks(string node_from,string
node_to,string port_nbrfrom,string port_typefrom,string port_nbrto,string
port_typeto,int bidirectional_link_used,int first_time1, int last_rows1);
string PyUpdateMultipleLkUsedLinks(string node_from,string node_to,string
port_nbrfrom,string port_nbrto,string port_typefrom,string port_typeto,int
lkused,int first_time1, int last_rows1);
string PyUpdateMultipleLkTypeLinks(string node_from,string node_to,string
port_nbrfrom,string port_nbrto,string port_typefrom,string
port_typeto,string link_type,int first_time1, int last_rows1);
 string PyGetBoardCpntRow_cpntname(string cpntname);
 string PyGetHWCpntRow_serialnb(string serialnb);
 vector<string> PyGetDeviceNamesPerLocation(string location);
 string PyGetBoardCpntRow_cpntid(int cpntid);
 string PyGetHWCpntRow_snbid(int snbid);
 string PyGetMicroConnectivityRow_lkid(int lkid);

Appendices

 311

 string PyGetMicroConnectivityRow_node(int nodeid,int port_nb,int
way_given);
 vector<string> PyGetBoardCpntPerType(string cpnttype);
 vector<string> PyGetSpareHWPerLocation(string location);
 vector<string> PyGetSpareHWCpntPerLocation(string location);
 vector<string> PyGetSpareHWPerType(string hwtype);
 vector<string> PyGetCpntNamesPerBoard(string motherboardname);
 vector<string> PyGetSpareHWCpntPerType(string hwtype);
 vector<int> PyGetMicroLkFromCpntID(int cpntid_from, int
motherboard);
vector<int> PyGetMicroLkToCpntID(int cpntid_from, int motherboard);
string PyInsertTestFunctionalDevice(string location,vector<string>
ipaddList,vector<string> ipnameList,vector<string>
subnetList,vector<string> portnbList,vector<string> port_typeList,
vector<int> port_wayList,int last);
string PyInsertMultipleSpareDevices(string hwname,string hwtype,string
serialnb,string responsible,string location,string comments,int first,int
last);
string PyInsertMultipleBoardCpnts(string cpntname,string cpnttype,int
replacable,string motherboardname,string serialnb,string hwtype,string
responsible,string location,string comments,int first,int last);
string PyInsertMultipleSparePorts(string serialnb,string ptnb,int
port_way,string port_type,string bia,string macadd, int first,int last);
string PyInsertSparePort(string serialnb,string ptnb,int port_way,string
port_type,string bia,string macadd, int last);
string PyInsertSpareDevice(string hwname,string hwtype,string
serialnb,string responsible,string location,string comments,int last);
string PyInsertMultipleMicroLinks(string nfrom,string nto,int pfrom,int
pto,string lk_type ,int bidirectional,int first,int last);
string PyGetCpntName_cpntid(int cpntID);
int PyGetCpntID_cpntname(string cpntname);
string PyUpdateMultipleDeviceSystemList(string devicename,string
new_systemList,int first_time1, int last_rows1);
vector<string> PyGetMicroConnectFromPortid(int mboardportid_from,int
mboardportid_to,string cpntname);
vector<string> PyGetMicroConnectToCpntType(int mboardportid_from,int
cpnttype_given,string cpnttype);
vector<string> PyGetMicroConnectBetweenBoardCpntAndMotherBoard(string
cpntname_from,int mboard_portid);
string PyDeleteLinkRow(int linkid,int macro_link);
string PyDeletePortRow(int portid);
vector<string> PyGetLkTypeDecomposition_lknb(int lktypeID);
string PyUpdateMultipleDTypeDevices(string devicename,string devicetype,int
first_time1,int last_rows1);
string PyUpdateMultipleLkInfoLinks(string node_from,string node_to,string
port_nbrfrom,string port_typefrom,string port_nbrto,string
port_typeto,string link_info,int first_time1, int last_rows1);
string PyGetBootImageRow_devicename(string functionaldeviname);
string PyDeleteBootImage(string devicename);
string PyInsertMultipleBootImages(string devicename,string
boot_image,string kernel_image_location,string initrd_image_location,string
physical_location,string boot_protocol,int first_rows,int last_rows);
string PyUpdateBootImage(string devicename,string boot_image,string
kernel_image_location,string initrd_image_location,string
physical_location,string boot_protocol);
int PyGetPortID_portinfo(int deviceid, string port_nb, string port_type,
int port_way);
string PyDeleteIPAlias(string ipalias);
string PyInsertSimpleDeviceFunction(string function,int last);
string PyInsertMultipleFunctionalDevices(string sysname,string
devname,string devtype,int dnode,int promismode,string serialnb,string

Appendices

 312

hwtype,string responsible,string location,string comments,string
function_list,int first,int last) ;
string PyUpdateMultipleAttributesDevices(string devicename,int node,int
promiscuous_mode,string location,string function_list,int first_time1,int
last_rows1);
string PyInsertFunctionalDevice(string sysname,string devname,string
devtype,int dnode,int promismode,string serialnb,string hwtype,string
responsible,string location,string comments,string function_list,int last)
;
vector<int> PyGetLkIDsPerLkInfo(string lkinfo);
string PyGetIPAliasRow(string ipalias) ;
vector<string> PyGetIPAliasesPerIPName(string IPName);
string PyUpdateIPalias(string old_ipalias,string new_ipalias);
string PyUpdateHWSerialNB(string old_serialnb,string new_serialnb);
string PyUpdateDeviceFunctionName(string old_function_name,string
new_function_name);
vector<string> PyGetDeviceNamesPerFunction(string function_name);
string PyInsertMultipleIPAliases(string ip_address,string ipname,string
ipalias,int first,int last);
string PyUpdateMultipleDeviceTypeSystemList(string devicetype,string
new_systemList,int first_time1, int last_rows1);
vector<string> PyGetAvailableFunctions();
string PyDeleteHWDevice(string serialnb);
string PyDeleteFunctionalDeviceType(string devicetype);
string PyDeleteFunctionalDevice(int deviceid);
string PyDeleteSystemName(string system_name);
vector<string> PyGetListOfSubsystems();
string PyInsertSubsystem(string system_name,string parent_name);
string PyUpdateSubsystemName(string old_sysname,string new_sysname);
string PySwapTwoDevices(string functional_devname1,string
functional_devname2,string comments);
string PyGetFunctionalDeviceStatus(string dname);
string PyGetFunctionalBoardCpntStatus(string cpntname);
string PyGetHWLastFunctionalDevice(string serialnb);
string PyGetHWLastFunctionalBoardCpntName(string hw_serialnb,int hw_snbid);
string PyGetFunctionalDeviceLastHW(string functional_name);
string PyGetFunctionalBoardCpntNameLastHW(string functional_cpntname);
string PyGetHWDeviceStatus(string dname);
string PyGetHWBoardCpntStatus(string serialnb, int snbid);
vector<string> PyGetHWDeviceByStatus(string systemname,string
device_status);
vector<string> PyGetHWBoardCpntByStatus(string cpnt_status);
vector<string> PyGetHistoryOfHWDevice(string serial_nb,string
min_date,string max_date);
vector<string> PyGetHistoryOfHWBoardCpnt(string serial_nb,int
hw_snbid,string min_date,string max_date);
vector<string> PyGetHistoryOfFunctionalDevice(string functional_name,string
min_date,string max_date);
vector<string> PyGetHistoryOfFunctionalBoardCpntName(string
functional_cpntname,string min_date,string max_date);
vector<string> PyGetFunctionalDeviceByStatus(string systemname,string
device_status);
vector<string> PyGetSpareHWTypeList();
string PyGetHWDeviceRow_serialnb(string serialnb);
vector<string> PyGetPortInfoPerSpare(string snb) ;
string PyGetSparePortRow_snb(string serialnb,string port_nb,int
port_way,string port_type) ;

};

Appendices

 313

Appendix J Example of dhcp config file

Figure 128. Extract of the dhcp_file.xml.

Appendices

 314

Figure 129. Extract of the dhcp config file.

Appendices

 315

Appendix J Check that the number of paths for the Flow devices is
correct

Let us note N the total number of Flow devices and M the number of connected outputs of a
Flow device to the SFCs. We assume that M is the same for all the Flow devices. In our case,
M is equal 17. In this context, a valid path is a sequence of distinct nodes where the first node
is a Flow device (intermediate node) and the last node is a device of SFC type (it is a hsot
node).
Let us show that the number of possible valid paths between a given Flow device and the
devices of type SFC, is given by the following formula, N>0 and k corresponds to the number
of Flow devices in the path besides the first node:

Lemma
If there are N flow devices, the maximum path length is N. It corresponds to the one which
goes through all the N Flow devices. Vice-versa, if the maximum path length is N, then there
are N Flow devices (indeed if a path length is equal to N, it means that there are N +1 devices
in the path). The nodes (except the last ones) in valid paths are Flow devices according to the
Flower topology. As the last node in a valid path is a device of type SFC, it means that there
are N Flow devices.
So having N Flow devices is equivalent to having the maximum path length equals to N.
Let us count the number of paths group by p (where p is the path length) and proof that the
number of paths which has a length equal to p is M*(N-1)!/(N-p)!

We search for all the paths of length p, i.e. paths with p+1 nodes. The first node (Flow device)
and last node (SFC) are fixed.
So we need to count the number of ways of obtaining an ordered 15 subset of (p-1) elements
from a set of (N-1) elements. In other words, it is a permuation of p-1 elements among N-1.
So in total we have M*(N-1)!/(N-p)! possible paths, which correspond to the formula.
Then we just sum up the number of paths group by p, over p. We then have M∑(N-1)!/(N-p)!,
sum over p which is between 1 and N.

As p corresponds to the path length, so it is between 1 and N. In the first formula, k is the
number of Flow devices in the path, we have k=p-1. Indeed if the path length p is 1, it means
that we did not select a Flow device as the first one is fixed. So k=0. Same remark if p=N.

Thus by replacing N with 6 and M with 17, we obtained 5542 paths.
N.B: the same number of paths group by path hop has been found by the routing algorithm.
By symmetry of the topology (rotation), the number of possible valid paths starting from a
Flow device and ending at a device of type SFC, is the same for any flower.

15 The order matters as the path (Flow_0, Flow_1,Flow_2, SFC_1) is not the same as the path (Flow_0,
Flow_2,Flow_1, SFC_1). There are two distinct paths.

Appendices

 316

Appendix L Inserting the connectivity of the HCAL system

/**
******/
// Author: L.Abadie
// Code compatible with version: v3.2 of the confDB.lib
// Insert the device types, the functional devices, the ports and the link
types for the HCAL system.
/**
******/

#include "calo_insertion.h"

int InsertCaloElement()
{
int res_query=0;
int res2=0;
int i=0;
int pos1=0;
int pos2=0;
int loc_pos1=0;
int loc_pos2=0;
int actual_len=0;

char functional_name1[100];
char functional_name2[100];
char device_function="none";
char hw_name1[100];
char hw_name2[100];
char location1[100];
char location2[100];
char devtype[100];
char ptnb[10];
int dtype_case=0;
int j=0;
clock_t start,finish;
double time;
char* ErrMess=(char*)malloc(1001*sizeof(char));
if(ErrMess==NULL)
 return -1;
char* s=(char*)malloc(2001*sizeof(char));
FILE* f;
char* p=NULL;
if(s==NULL)
{
 free(ErrMess);
 return -1;
}

//info about the device type
char
hcal_device_type[6][100]={"HCAL_CHANNEL","HCAL_PMT","HCAL_DAC","HCAL_INTEGR
ATOR","HCAL_FE_CRATE","HCAL_LED"};
int hcal_input_nb[6]={1,1,216,1400,2000,1000};
int hcal_output_nb[6]={1,3,20,20,20,1000};
char
hcal_rgbcolor_type[6][100]={"115,115,114","22,22,22","45,87,96","100,100,10
0","200,200,200","150,150,150"};

Appendices

 317

char hcal_description_type[6][100]={"also called cell","pmt for hcal","dac
board for the hcal","integrators for the hcal","fe crates for hcal","led
for hcal"};
start=clock();
// first we insert the device type
for(i=0;i<6;i++)
{
 std::cout<<" devtype="<<hcal_device_type[i]<<" and"<<std::endl;
 std::cout<<" rgbcolor="<<hcal_rgbcolor_type[i]<<" and"<<std::endl;
 std::cout<<" hcal_description_type="<<hcal_description_type[i]<<"
and"<<std::endl;

 if (i==0)

 res_query=InsertMultipleDeviceTypes("HCAL",hcal_device_type[i],hcal_i
nput_nb[i],hcal_output_nb[i],
hcal_description_type[i],hcal_rgbcolor_type[i],1, 0, ErrMess);
 else
 {
 if(i==5)

 res_query=InsertMultipleDeviceTypes("HCAL",hcal_device_type[i],hcal_i
nput_nb[i],hcal_output_nb[i],
hcal_description_type[i],hcal_rgbcolor_type[i],0, 1, ErrMess);
 else

 res_query=InsertMultipleDeviceTypes("HCAL",hcal_device_type[i],hcal_i
nput_nb[i],hcal_output_nb[i],
hcal_description_type[i],hcal_rgbcolor_type[i],0, 0, ErrMess);

 }
}
i=0;
//then we insert the devices CHANNEL + PMT
//std::cout<<" Device type inserted and errmess="<<ErrMess<<std::endl;

if ((f=fopen("hcal_conn_1.txt","r"))== NULL)
{
 //printf("Can't open %sn","hcal_conn_1.txt");
 std::cout<<" can't open the file"<<std::endl;
 res_query=DBDeconnexion(ErrMess);
 free(ErrMess);
 free(s);
 Sleep(1000);
 exit(1);
}
else
{
 while (fgets(s,1000,f)!=NULL)
 {
 pos1=strcspn(s," ");
 s[pos1]='\0';
 strcpy(functional_name1,s);

 pos2=strcspn(s+pos1+1," ");
 s[pos1+1+pos2]='\0';
 sprintf(hw_name1,"%s",s+pos1+1);

 actual_len=pos1+1+pos2;
 pos1=strcspn(s+actual_len+1," ");

Appendices

 318

 s[pos1+1+actual_len]='\0';
 strcpy(functional_name2,s+actual_len+1);

 actual_len+=pos1+1;
 pos2=strcspn(s+actual_len+1," ");
 s[actual_len+pos2+1]='\0';
 sprintf(hw_name2,"%s",s+actual_len+1);

 loc_pos1=strcspn(functional_name1,"I");
 if(loc_pos1<strlen(functional_name1))

 sprintf(location1,"HCAL_STATION%s",functional_name1+loc_pos1+1);
 else
 {
 loc_pos1=strcspn(functional_name1,"O");
 if(loc_pos1<strlen(functional_name1))

 sprintf(location1,"HCAL_STATION%s",functional_name1+loc_pos1+1);
 }

 loc_pos2=strcspn(functional_name2,"I");
 if(loc_pos2<strlen(functional_name2))

 sprintf(location2,"HCAL_STATION%s",functional_name2+loc_pos2+1);
 else
 {
 loc_pos2=strcspn(functional_name2,"O");
 if(loc_pos2<strlen(functional_name2))

 sprintf(location2,"HCAL_STATION%s",functional_name2+loc_pos2+1);
 }

 if(i>1480)
 {

 std::cout<<"functional_name1="<<functional_name1<<std::endl;
 std::cout<<"hw_name1="<<hw_name1<<std::endl;
 std::cout<<"location1="<<location1<<std::endl;

 std::cout<<"functional_name2="<<functional_name2<<std::endl;
 std::cout<<"hw_name2="<<hw_name2<<std::endl;
 std::cout<<"location2="<<location2<<std::endl;

 }
 if(i==0 || (i%100==1 && i>1))
 {

 res2=InsertMultipleFunctionalDevices("HCAL",functional_name1,"HCAL_CH
ANNEL",1,0,hw_name1,"hcal_cell","youri","nothing",location1,device_function
,1,0,ErrMess);
 }
 else
 {

 res2=InsertMultipleFunctionalDevices("HCAL",functional_name1,"HCAL_CH
ANNEL",1,0,hw_name1,"hcal_cell","youri","nothing",location1,device_function
,0,0,ErrMess);
 }

Appendices

 319

 if(strncmp(functional_name2,"HCAL_PMT_I_14_02",16)==0 ||
(i%100==0 && i>0)) //means last one
 {

 res2=InsertMultipleFunctionalDevices("HCAL",functional_name2,"HCAL_PM
T",0,0,hw_name2,"hcal_pmt","youri","nothing",location2,device_function,0,1,
ErrMess);

 }
 else
 {

 res2=InsertMultipleFunctionalDevices("HCAL",functional_name2,"HCAL_PM
T",0,0,hw_name2,"hcal_pmt","youri","nothing",location2,device_function,0,0,
ErrMess);

 }
 i++;
 }
 //std::cout<<"value of ErrMess"<<ErrMess<<std::endl;
 res2=fclose(f);

 std::cout<<" first part of devices inserted"<<ErrMess<<" and
i="<<i<<std::endl;
 i=0;
}
 //then we insert the devices CHANNEL + PMT

 if ((f=fopen("hcal_conn_2.txt","r"))== NULL)
 {
 //printf("Can't open %sn","hcal_conn_1.txt");
 std::cout<<" can't open the second file"<<std::endl;
 res_query=DBDeconnexion(ErrMess);
 free(ErrMess);
 free(s);
 Sleep(1000);
 exit(1);
 }
 else
 {

 while (fgets(s,1000,f)!=NULL)
 {
 pos1=strcspn(s," ");
 s[pos1]='\0';
 strcpy(functional_name1,s);
 pos2=strcspn(s+pos1+1," ");
 s[pos1+1+pos2]='\0';
 sprintf(hw_name1,"%s",s+pos1+1);
 if((p=strstr(functional_name1,"LED"))!=NULL) //means it's
a led
 {
 loc_pos1=strcspn(functional_name1,"D");
 if(loc_pos1<strlen(functional_name1))

 sprintf(location1,"HCAL_LED_POS%s",functional_name1+loc_pos1+4);
 strcpy(devtype,"HCAL_LED");
 dtype_case=1;
 }
 else
 {

Appendices

 320

 if((p=strstr(functional_name1,"DAC"))!=NULL) //means
it's a DAC
 {
 loc_pos1=strcspn(functional_name1,"D");
 if(loc_pos1<strlen(functional_name1))

 sprintf(location1,"HCAL_DAC_BD%s",functional_name1+loc_pos1+3);
 strcpy(devtype,"HCAL_DAC");
 dtype_case=2;
 }
 else
 {
 if((p=strstr(functional_name1,"INT"))!=NULL)
//means it's a integrators
 {
 loc_pos1=strcspn(functional_name1,"T");
 if(loc_pos1<strlen(functional_name1))

 sprintf(location1,"HCAL_INT_BD%s",functional_name1+loc_pos1+1);
 strcpy(devtype,"HCAL_INTEGRATOR");
 dtype_case=3;
 }
 else
 {

 if((p=strstr(functional_name1,"FE"))!=NULL) //means it's a front-end
 {

 loc_pos1=strcspn(functional_name1,"E");

 if(loc_pos1<strlen(functional_name1))

 sprintf(location1,"HCAL_CRATE%s",functional_name1+loc_pos1+1);
 }
 strcpy(devtype,"HCAL_FE_CRATE");
 dtype_case=4;
 }
 }
 }
 if(i<00)
 {
 std::cout<<"hw_name1="<<hw_name1<<std::endl;

 std::cout<<"functional_name1="<<functional_name1<<std::endl;
 std::cout<<"location1="<<location1<<std::endl;
 }
 if(i>1020)
 {
 std::cout<<"hw_name1="<<hw_name1<<std::endl;

 std::cout<<"functional_name1="<<functional_name1<<std::endl;
 std::cout<<"location1="<<location1<<std::endl;
 }
 if(i==0)
 {

 res2=InsertMultipleFunctionalDevices("HCAL",functional_name1,devtype,
0,0,hw_name1,devtype,"youri","nothing",location1,device_function,1,0,ErrMes
s);

 }

Appendices

 321

 else
 {
 if(strncmp(functional_name1,"HCAL_FE_04",10)==0)
 {

 res2=InsertMultipleFunctionalDevices("HCAL",functional_name1,devtype,
0,0,hw_name1,devtype,"youri","nothing",location1,device_function,0,1,ErrMes
s);

 }
 else
 {

 res2=InsertMultipleFunctionalDevices("HCAL",functional_name1,devtype,
0,0,hw_name1,devtype,"youri","nothing",location1,device_function,0,0,ErrMes
s);

 }
 }
 i++;
 }
 //std::cout<<"value of ErrMess"<<ErrMess<<std::endl;
 res2=fclose(f);
 }

std::cout<<" second part of devices inserted"<<ErrMess<<std::endl;
// insert the link type
res2=InsertSimpleLinkType("control_link",1, ErrMess);
std::cout<<"Link type inserted and value of ErrMess"<<ErrMess<<std::endl;

// insert the port per device

res_query=InsertMultipleDeviceTypes("HCAL","HCAL_CTRL_PC",4,4, "ctrl with
specs master","12,12,12",1, 1, ErrMess);

res2=InsertMultipleFunctionalDevices("HCAL","PCLBHCC","HCAL_CTRL_PC",1,0,"H
W_PCLBHCC","pc","youri","nothing","crate 1",device_function,1,0,ErrMess);
res2=InsertMultipleFunctionalDevices("HCAL","PCLBHCA","HCAL_CTRL_PC",1,0,"H
W_PCLBHCA","pc","youri","nothing","crate 1",device_function,0,0,ErrMess);
res2=InsertMultipleFunctionalDevices("HCAL","PCLBHCI","HCAL_CTRL_PC",1,0,"H
W_PCLBHCI","pc","youri","nothing","crate 1",device_function,0,1,ErrMess);

if ((f=fopen("hcal_conn_1.txt","r"))== NULL)
{
 //printf("Can't open %sn","hcal_conn_1.txt");
 std::cout<<" can't open the file"<<std::endl;
 res_query=DBDeconnexion(ErrMess);
 free(ErrMess);
 free(s);
 Sleep(1000);
 exit(1);
}
else
{
 i=0;
 while (fgets(s,1000,f)!=NULL)
 {

Appendices

 322

 pos1=strcspn(s," ");
 s[pos1]='\0';
 strcpy(functional_name1,s);

 pos2=strcspn(s+pos1+1," ");
 s[pos1+1+pos2]='\0';
 strcpy(hw_name1,s+pos1+1);

 actual_len=pos1+1+pos2;
 pos1=strcspn(s+actual_len+1," ");

 s[pos1+1+actual_len]='\0';
 strcpy(functional_name2,s+actual_len+1);

 actual_len+=pos1+1;
 pos2=strcspn(s+actual_len+1," ");
 s[actual_len+pos2+1]='\0';
 strcpy(hw_name2,s+actual_len+1);

 if(i==0)
 {

 res_query=InsertMultiplePorts(functional_name1,"0",1,2,1000,0,"optica
l","","","","","","T",1,0,ErrMess); //one for pmt

 res_query=InsertMultiplePorts(functional_name1,"1",1,2,1000,0,"optica
l","","","","","","T",0,0,ErrMess); // one for led1

 res_query=InsertMultiplePorts(functional_name1,"2",1,2,1000,0,"optica
l","","","","","","T",0,0,ErrMess); //one for led2
 }
 else
 {

 res_query=InsertMultiplePorts(functional_name1,"0",1,2,1000,0,"optica
l","","","","","","T",0,0,ErrMess); //one for pmt

 res_query=InsertMultiplePorts(functional_name1,"1",1,2,1000,0,"optica
l","","","","","","T",0,0,ErrMess); // one for led1

 res_query=InsertMultiplePorts(functional_name1,"2",1,2,1000,0,"optica
l","","","","","","T",0,0,ErrMess); //one for led2
 }
 if(strcmp(functional_name2,"HCAL_PMT_I_14_02")==0) //means last
one
 {

 res_query=InsertMultiplePorts(functional_name2,"0",1,1,1000,0,"optica
l","","","","","","T",0,0,ErrMess); //one for the channel

 res_query=InsertMultiplePorts(functional_name2,"0",1,2,1000,0,"analog
","","","","","","T",0,0,ErrMess); // one for the dac

 res_query=InsertMultiplePorts(functional_name2,"1",1,2,1000,0,"analog
","","","","","","T",0,0,ErrMess); //one for integrators

Appendices

 323

 res_query=InsertMultiplePorts(functional_name2,"2",1,2,1000,0,"analog
","","","","","","T",0,1,ErrMess); //one for fe boards

 }
 else
 {

 res_query=InsertMultiplePorts(functional_name2,"0",1,1,1000,0,"optica
l","","","","","","T",0,0,ErrMess); //one for the channel

 res_query=InsertMultiplePorts(functional_name2,"0",1,2,1000,0,"analog
","","","","","","T",0,0,ErrMess); // one for the dac

 res_query=InsertMultiplePorts(functional_name2,"1",1,2,1000,0,"analog
","","","","","","T",0,0,ErrMess); //one for integrators

 res_query=InsertMultiplePorts(functional_name2,"2",1,2,1000,0,"analog
","","","","","","T",0,0,ErrMess); //one for fe boards

 }
 i++;
 }
 std::cout<<" first part of devices ports
inserted"<<ErrMess<<std::endl;

 res2=fclose(f);
 i=0;
}

if ((f=fopen("hcal_conn_2.txt","r"))== NULL)
{
 //printf("Can't open %sn","hcal_conn_1.txt");
 std::cout<<" can't open the second file"<<std::endl;
 res_query=DBDeconnexion(ErrMess);
 free(ErrMess);
 free(s);
 Sleep(1000);
 exit(1);
}
else
{
 i=0;
 while (fgets(s,1000,f)!=NULL)
 {
 pos1=strcspn(s," ");
 s[pos1]='\0';
 strcpy(functional_name1,s);
 pos2=strcspn(s+pos1+1," ");
 s[pos1+1+pos2]='\0';
 strcpy(hw_name1,s+pos1+1);
 if((p=strstr(functional_name1,"LED"))!=NULL) //means it's a led
 {
 for(j=0;j<100;j++)
 {
 sprintf(ptnb,"%d",j);
 if(i==0 && j==0)

 res_query=InsertMultiplePorts(functional_name1,ptnb,1,1,1000,0,"optic
al","","","","","","T",1,0,ErrMess); //one to channel
 else

Appendices

 324

 res_query=InsertMultiplePorts(functional_name1,ptnb,1,1,1000,0,"optic
al","","","","","","T",0,0,ErrMess); //one to channel
 }

 res_query=InsertMultiplePorts(functional_name1,"0",1,2,1000,0,"analog
","","","","","","T",0,0,ErrMess); // one for the dac

 res_query=InsertMultiplePorts(functional_name1,"1",1,2,1000,0,"analog
","","","","","","T",0,0,ErrMess); //one for fe boards

 }
 else
 {
 if((p=strstr(functional_name1,"DAC"))!=NULL) //means it's
a DAC
 {
 for(j=0;j<216;j++)
 {
 if(j<10)
 sprintf(ptnb,"00%d",j);
 else
 {
 if(j<100)
 sprintf(ptnb,"0%d",j);
 else
 sprintf(ptnb,"%d",j);
 }

 res_query=InsertMultiplePorts(functional_name1,ptnb,1,1,1000,0,"analo
g","","","","","","T",0,0,ErrMess); //one to led/pmt
 }
 for(j=0;j<4;j++)
 {
 sprintf(ptnb,"%d",j);

 res_query=InsertMultiplePorts(functional_name1,ptnb,1,2,1000,0,"analo
g","","","","","","T",0,0,ErrMess); // one for the control pc
 }
 }
 else
 {
 if((p=strstr(functional_name1,"INT"))!=NULL) //means
it's a integrators
 {
 for(j=0;j<1400;j++)
 {
 if(j<10)
 sprintf(ptnb,"000%d",j);
 else
 {
 if(j<100)
 sprintf(ptnb,"00%d",j);
 else
 {
 if(j<1000)
 sprintf(ptnb,"0%d",j);
 else
 sprintf(ptnb,"%d",j);
 }

Appendices

 325

 }

 res_query=InsertMultiplePorts(functional_name1,ptnb,1,1,1000,0,"analo
g","","","","","","T",0,0,ErrMess); //one to led/pmt
 }
 for(j=0;j<4;j++)
 {
 sprintf(ptnb,"%d",j);

 res_query=InsertMultiplePorts(functional_name1,ptnb,1,2,1000,0,"analo
g","","","","","","T",0,0,ErrMess); // one for the control pc
 }
 }
 else
 {
 for(j=0;j<1500;j++)
 {
 if(j<10)
 sprintf(ptnb,"000%d",j);
 else
 {
 if(j<100)
 sprintf(ptnb,"00%d",j);
 else
 {
 if(j<1000)
 sprintf(ptnb,"0%d",j);
 else
 sprintf(ptnb,"%d",j);
 }
 }

 res_query=InsertMultiplePorts(functional_name1,ptnb,1,1,1000,0,"analo
g","","","","","","T",0,0,ErrMess); //one for LED + PMT

 }
 for(j=0;j<4;j++)
 {
 sprintf(ptnb,"%d",j);

 res_query=InsertMultiplePorts(functional_name1,ptnb,1,2,1000,0,"analo
g","","","","","","T",0,0,ErrMess); //one for the control PC

 }

 }
 }
 }

 i++;
 }

 for(j=1;j<5;j++)
 {
 sprintf(ptnb,"%d",j);

 res_query=InsertMultiplePorts("PCLBHCI",ptnb,1,1,1000,0,"specs","",""
,"","","","T",0,0,ErrMess); //one to led/pmt
 if(j<3)

Appendices

 326

 {

 res_query=InsertMultiplePorts("PCLBHCC",ptnb,1,1,1000,0,"specs","",""
,"","","","T",0,0,ErrMess); //one to led/pmt

 res_query=InsertMultiplePorts("PCLBHCA",ptnb,1,1,1000,0,"specs","",""
,"","","","T",0,0,ErrMess); //one to led/pmt
 }
 }
 for(j=3;j<5;j++)
 {

 sprintf(ptnb,"%d_1",j);

 res_query=InsertMultiplePorts("PCLBHCC",ptnb,1,1,1000,0,"specs","",""
,"","","","T",0,0,ErrMess); //one to led/pmt

 res_query=InsertMultiplePorts("PCLBHCA",ptnb,1,1,1000,0,"specs","",""
,"","","","T",0,0,ErrMess); //one to led/pmt
 sprintf(ptnb,"%d_2",j);

 res_query=InsertMultiplePorts("PCLBHCC",ptnb,1,1,1000,0,"specs","",""
,"","","","T",0,0,ErrMess); //one to led/pmt
 if(j==4)

 res_query=InsertMultiplePorts("PCLBHCA",ptnb,1,1,1000,0,"specs","",""
,"","","","T",0,1,ErrMess); //one to led/pmt
 else

 res_query=InsertMultiplePorts("PCLBHCA",ptnb,1,1,1000,0,"specs","",""
,"","","","T",0,0,ErrMess); //one to led/pmt

 }
 std::cout<<" second part of devices ports
inserted"<<ErrMess<<std::endl;

 res2=fclose(f);
}

finish = clock();
time = (double(finish)-double(start))/CLOCKS_PER_SEC;
std::cout<<"time= "<<time <<std::endl;
free(ErrMess);
free(s);
return 0;
}

/**
******/
// Author: L.Abadie
// Code compatible with version:v3.2 of the confDB.lib
// Insert the macro links for the HCAL.
/**
******/

#include "calo_insertion.h"

int GetIndexForTabCHAR_second(char** element_List,int elt_List_nb, char*
element_searched)
{

Appendices

 327

int i=0;
int res=-1;
int stop=1;
int pos2=2;
int pos1=0;
int j=0;
int elt_searched_len=strlen(element_searched);

while(i<elt_List_nb)
{
 if(strncmp(element_List[i],element_searched,elt_searched_len)==0)
 {

 return i;

 }
 i++;
}

return res;
}

int InsertCaloConnectivity()
{
int res_query=0;
int res2=0;
int i=0;
int pos1=0;
int pos2=0;
int loc_pos1=0;
int loc_pos2=0;
int actual_len=0;
char login[30];
char pwd[30];
char dbname[30];
char functional_name1[100];
char functional_name2[100];
char functional_name3[100];
char functional_name4[100];
char functional_name5[100];
char functional_name6[100];
char functional_name7[100];
char hw_name1[100];
char hw_name2[100];
char location1[100];
char location2[100];
char devtype[100];
char ptnb[10];
char dac_ptnb[10];
char fe_ptnb[10];
char int_ptnb[10];
char led1_pnb[10];
char led2_pnb[10];
int led_pnb_bis[104];
char** led_name;
int dtype_case=0;
int led1_idx=0;
int led2_idx=0;
int j=0;
clock_t start,finish;
double time;

Appendices

 328

led_name=(char**)malloc(104*sizeof(char*));
if(led_name==NULL)
 return -1;
for(i=0;i<104;i++)
{
 led_name[i]=(char*)malloc(61*sizeof(char));
 if(led_name[i]==NULL)
 {
 for(j=0;j<i;j++)
 free(led_name[j]);
 free(led_name);
 return -1;
 }
}
char* ErrMess=(char*)malloc(1001*sizeof(char));
if(ErrMess==NULL)
{
 for(j=0;j<104;j++)
 free(led_name[j]);
 free(led_name);
 return -1;
}
char* s=(char*)malloc(2001*sizeof(char));
FILE* f;
char* p=NULL;
if(s==NULL)
{
 free(ErrMess);
 for(j=0;j<104;j++)
 free(led_name[j]);
 free(led_name);
 return -1;
}
i=0;
j=3;
std::cout<<" before filling things up"<<std::endl;
while(i<104 && j<29)
{
 if(j<10)
 {
 sprintf(led_name[i],"HCAL_LED1_C_0%d",j);
 i++;
 sprintf(led_name[i],"HCAL_LED1_A_0%d",j);
 i++;
 sprintf(led_name[i],"HCAL_LED2_C_0%d",j);
 i++;
 sprintf(led_name[i],"HCAL_LED2_A_0%d",j);
 }
 else
 {
 sprintf(led_name[i],"HCAL_LED1_C_%d",j);
 i++;
 sprintf(led_name[i],"HCAL_LED1_A_%d",j);
 i++;
 sprintf(led_name[i],"HCAL_LED2_C_%d",j);
 i++;
 sprintf(led_name[i],"HCAL_LED2_A_%d",j);
 }
 led_pnb_bis[i]=0;

Appendices

 329

 j++;
 i++;

}

i=0;

if ((f=fopen("hcal_conn1_v3.txt","r"))== NULL)
{
 //printf("Can't open %sn","hcal_conn_1.txt");
 std::cout<<" can't open the file"<<std::endl;
 res_query=DBDeconnexion(ErrMess);
 free(ErrMess);
 free(s);
 for(j=0;j<104;j++)
 free(led_name[j]);
 free(led_name);
 Sleep(5000);
 exit(1);
}
else
{

 std::cout<<" file opened"<<std::endl;
 i=0;
 while (fgets(s,1000,f)!=NULL)
 {

 pos1=strcspn(s," ");
 s[pos1]='\0';
 strcpy(functional_name1,s);//channel

 pos2=strcspn(s+pos1+1," ");
 s[pos1+1+pos2]='\0';
 sprintf(hw_name1,"%s",s+pos1+1);

 actual_len=pos1+1+pos2;
 pos1=strcspn(s+actual_len+1," ");

 s[pos1+1+actual_len]='\0';
 strcpy(functional_name2,s+actual_len+1);//pmt

 actual_len+=pos1+1;
 pos2=strcspn(s+actual_len+1," ");
 s[actual_len+pos2+1]='\0';
 sprintf(hw_name2,"%s",s+actual_len+1);

 actual_len+=pos2+1;
 pos1=strcspn(s+actual_len+1," ");
 s[actual_len+pos1+1]='\0';
 sprintf(functional_name3,"%s",s+actual_len+1);//dac

 actual_len+=pos1+1;
 pos2=strcspn(s+actual_len+1," ");
 s[actual_len+pos2+1]='\0';
 sprintf(dac_ptnb,"%s",s+actual_len+1);

 actual_len+=pos2+1;

Appendices

 330

 pos1=strcspn(s+actual_len+1," ");
 s[actual_len+pos1+1]='\0';
 sprintf(functional_name4,"%s",s+actual_len+1);//integrat

 actual_len+=pos1+1;
 pos2=strcspn(s+actual_len+1," ");
 s[actual_len+pos2+1]='\0';
 sprintf(int_ptnb,"%s",s+actual_len+1);

 actual_len+=pos2+1;
 pos1=strcspn(s+actual_len+1," ");
 s[actual_len+pos1+1]='\0';
 sprintf(functional_name5,"%s",s+actual_len+1);//FE

 actual_len+=pos1+1;
 pos2=strcspn(s+actual_len+1," ");
 s[actual_len+pos2+1]='\0';
 sprintf(fe_ptnb,"%s",s+actual_len+1);

 actual_len+=pos2+1;
 pos1=strcspn(s+actual_len+1," ");
 s[actual_len+pos1+1]='\0';
 sprintf(functional_name6,"%s",s+actual_len+1); //LED1

 actual_len+=pos1+1;
 pos2=strcspn(s+actual_len+1," ");
 s[actual_len+pos2+1]='\0';
 sprintf(functional_name7,"%s",s+actual_len+1); //LED2
 //connectivity between channel and pmt
 if(i==0)
 {
 std::cout<<"initialization"<<std::endl;

 res_query=InsertMultipleMacroLinks(functional_name1,functional_name2,
"0","0","optical","optical","control_link","none",0,1, 0,ErrMess);
 }
 else

 res_query=InsertMultipleMacroLinks(functional_name1,functional_name2,
"0","0","optical","optical","control_link","none",0,0, 0,ErrMess);

 //connectivity between channel and led (1+2)
 //need to solve the input port for the led

 led1_idx=GetIndexForTabCHAR_second(led_name,104,functional_name6);

 led2_idx=GetIndexForTabCHAR_second(led_name,104,functional_name7);
 sprintf(led1_pnb,"%d",led_pnb_bis[led1_idx]);
 sprintf(led2_pnb,"%d",led_pnb_bis[led2_idx]);

 res_query=InsertMultipleMacroLinks(functional_name1,functional_name6,
"1",led1_pnb,"optical","optical","control_link","none",0,0, 0,ErrMess);

 res_query=InsertMultipleMacroLinks(functional_name1,functional_name7,
"2",led2_pnb,"optical","optical","control_link","none",0,0, 0,ErrMess);
 led_pnb_bis[led2_idx]++;
 led_pnb_bis[led1_idx]++;
 //connectivity between pmt and dac

 res_query=InsertMultipleMacroLinks(functional_name2,functional_name3,
"0",dac_ptnb,"analog","analog","control_link","none",0,0, 0,ErrMess);

Appendices

 331

 //connectivity between pmt and fe

 res_query=InsertMultipleMacroLinks(functional_name2,functional_name5,
"1",fe_ptnb,"analog","analog","control_link","none",0,0, 0,ErrMess);

 //connectivity between pmt and int
 if(strcmp("HCAL_CELL_I_14_02",functional_name1)==0)

 res_query=InsertMultipleMacroLinks(functional_name2,functional_name4,
"2",int_ptnb,"analog","analog","control_link","none",0,0, 1,ErrMess);
 else

 res_query=InsertMultipleMacroLinks(functional_name2,functional_name4,
"2",int_ptnb,"analog","analog","control_link","none",0,0, 0,ErrMess);

 i++;
 }
 //std::cout<<"value of ErrMess"<<ErrMess<<std::endl;
 res2=fclose(f);

 std::cout<<" first part of connectivity inserted"<<ErrMess<<" and
i="<<i<<std::endl;
 i=0;
}

 //then we insert the devices CHANNEL + PMT

if ((f=fopen("hcal_conn2_v3.txt","r"))== NULL)
{
 //printf("Can't open %sn","hcal_conn_1.txt");
 std::cout<<" can't open the file"<<std::endl;
 res_query=DBDeconnexion(ErrMess);
 free(ErrMess);
 free(s);
 for(j=0;j<104;j++)
 free(led_name[j]);
 free(led_name);
 Sleep(5000);
 exit(1);
}
else
{
 i=0;
 actual_len=0;
 std::cout<<" second file opened"<<std::endl;

 while (fgets(s,1000,f)!=NULL && i==-1)
 {

 pos1=strcspn(s," ");
 s[pos1]='\0';
 strcpy(functional_name1,s);//LED

 pos2=strcspn(s+pos1+1," ");
 s[pos1+1+pos2]='\0';
 sprintf(hw_name1,"%s",s+pos1+1);//led hw

 actual_len=pos1+1+pos2;

Appendices

 332

 pos1=strcspn(s+actual_len+1," ");
 s[pos1+1+actual_len]='\0';
 strcpy(functional_name2,s+actual_len+1);// dac

 actual_len+=pos1+1;
 pos2=strcspn(s+actual_len+1," ");
 s[actual_len+pos2+1]='\0';
 sprintf(dac_ptnb,"%s",s+actual_len+1);

 actual_len+=pos2+1;
 pos1=strcspn(s+actual_len+1," ");
 s[actual_len+pos1+1]='\0';
 sprintf(functional_name4,"%s",s+actual_len+1);//FE

 actual_len+=pos1+1;
 //pos2=strcspn(s+actual_len+1," ");
 s[actual_len+5]='\0';
 sprintf(fe_ptnb,"%s",s+actual_len+1);

 if(i>1000)
 {

 std::cout<<"functional_name1="<<functional_name1<<std::endl;
 std::cout<<"dac_ptnb="<<dac_ptnb<<std::endl;

 std::cout<<"functional_name2="<<functional_name2<<std::endl;
 std::cout<<"fe_ptnb="<<fe_ptnb<<std::endl;

 std::cout<<"functional_name4="<<functional_name4<<std::endl;
 }
 //connectivity between led and dac
 if(i==0)
 {
 std::cout<<"initialization"<<std::endl;

 res_query=InsertMultipleMacroLinks(functional_name1,functional_name2,
"0",dac_ptnb,"analog","analog","control_link","none",0,1, 0,ErrMess);
 }
 else

 res_query=InsertMultipleMacroLinks(functional_name1,functional_name2,
"0",dac_ptnb,"analog","analog","control_link","none",0,0, 0,ErrMess);
 //connectivity between led and fe
 if(i==0)

 res_query=InsertMultipleMacroLinks(functional_name1,functional_name4,
"1",fe_ptnb,"analog","analog","control_link","none",0,1, 0,ErrMess);
 else
 {
 if(strcmp(functional_name1,"HCAL_LED2_A_28")==0)

 res_query=InsertMultipleMacroLinks(functional_name1,functional_name4,
"1",fe_ptnb,"analog","analog","control_link","none",0,0, 1,ErrMess);
 else
 res_query=InsertMultipleMacroLinks(functional_name1,functional_name4,
"1",fe_ptnb,"analog","analog","control_link","none",0,0, 0,ErrMess);

 }
 i++;

Appendices

 333

 }
 std::cout<<"second part done"<<ErrMess<<std::endl;
 //between fe and control pc
 res_query=InsertMultipleMacroLinks("HCAL_FE_01","PCLBHCA","0","1","an
alog","specs","control_link","none",1,1, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_FE_02","PCLBHCA","0","2","an
alog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_FE_03","PCLBHCC","0","1","an
alog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_FE_04","PCLBHCC","0","2","an
alog","specs","control_link","none",1,0, 0,ErrMess);
 //between dac and control pc
 res_query=InsertMultipleMacroLinks("HCAL_DAC_01","PCLBHCA","0","3_1",
"analog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_DAC_02","PCLBHCA","0","3_2",
"analog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_DAC_03","PCLBHCA","0","4_1",
"analog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_DAC_04","PCLBHCA","0","4_2",
"analog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_DAC_05","PCLBHCC","0","3_1",
"analog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_DAC_06","PCLBHCC","0","3_2",
"analog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_DAC_07","PCLBHCC","0","4_1",
"analog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_DAC_08","PCLBHCC","0","4_2",
"analog","specs","control_link","none",1,0, 0,ErrMess);
 //between int and control pc
 res_query=InsertMultipleMacroLinks("HCAL_INT_01","PCLBHCI","0","1","a
nalog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_INT_02","PCLBHCI","0","2","a
nalog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_INT_03","PCLBHCI","0","3","a
nalog","specs","control_link","none",1,0, 0,ErrMess);
 res_query=InsertMultipleMacroLinks("HCAL_INT_04","PCLBHCI","0","4","a
nalog","specs","control_link","none",1,0,1,ErrMess);
 res2=fclose(f);
 std::cout<<" third part of connectivity inserted"<<ErrMess<<" and
i="<<i<<std::endl;
 i=0;
}
finish = clock();
time = (double(finish)-double(start))/CLOCKS_PER_SEC;
std::cout<<"time= "<<time <<std::endl;

free(ErrMess);
free(s);
for(j=0;j<104;j++)
 free(led_name[j]);
free(led_name);
Sleep(50000);
return 0;
}

Glossary

 334

Glossary

ACS : ALMA Computing Software. Framework based on CORBA for

monitoring and configuring the ALMA project.

ALMA : Atacama Large Millimeter Array project.

API : Application Program Interface.

ARP : Address Resolution Protocol.

CALO : Calorimeter. One of the LHCb subdetector to permit identification of
electrons, hadrons and photons.

CASTOR : CERN Advanced Storage Manager.

CCPC : Credit-Card PCs. Small (credit-card size) embedded PCs will be used
to provide the necessary local intelligence on an electronics board.

CIC DB : Configuration Inventory Connectivity DB.

CORBA : Common Object Request Broker Architecture.

CP : Controls PC. Linux or Windows PC with PVSS installed used to
configure and monitor a set of modules.

CRC : Contrôle de Redondance Cyclique (CheckSum).

CS : Controls Switch. Switch installed in the controls network.

CVS : Concurrent Versions System. CVS is a version control system, used to
record the history of your source files.

 DAC : Digital Analog Converter.

DAQ : Data AcQuisition. System part of the LHCb Online system to transfer
data to the storage, via the HLT Trigger.

DBA : DataBase Administrator.

DBMS : Database Management Systems.

DHCP : Dynamic Host Configuration Protocol.

DIM : Distributed Information Management. Communication system for
distributed / mixed environments. It provides a network transparent
inter-process communication layer.

DIRAC : Distributed Infrastructure with Remote Agent Control. LHCb
distributed computing system to facilitate large-scale simulation and
user analysis tasks across computing resources of all participating
institutes.

DML : Data Manipulation Language.

DNS : Domain Name Server.

DP : Data Point. PVSS concept to represent an instance of a device type.

DPT : Data Point Type. PVSS concept to represent the structure of a device
type class.

DS : Distribution Switch. DAQ switch connected to the farm nodes.

ECAL : Electromagnetic CALorimeter. LHCb subdetector built to identify
electrons and to provide energy and momentum measurement.

ECS : Experiment Control System. Subsystem of the Online system,
responsible for configuring and operating the LHCb detector.

Glossary

 335

EFF : Event Filter Farm. DAQ Farm composed to roughly one thousand of
diskless PCs which will run the HLT algorithm.

ERM : Entity Relational Model.

FE : Front-End. Electronics modules used by the subdetectors to process the
signal.

Fk : Foreign key.

FPGA : Field Programmables Gates Arrays.

FSM : Finite State Machine. Model used to represent the behavior of the
LHCb experiment via states and transitions.

GOL : Gigabit Optical Link. Fast (Gigabit) Optical transmitter which is
resistant to high radiation.

HCAL : Hadron CALorimeter. LHCb subdetector built to identify hadrons and
to provide energy and momentum measurement.

HEP : High Energy Physics. Field of physics which aims at studying tiny
particles interactions.

HLT : High Level Trigger. Physics Algorithm to select the most interesting
events. It is executed on the EFF PCs.

HPD : Hybrid-Photon Detector. RICH Module based on pixel technology to
provide high precision and low-noise detection of the Cherenkov
radiation.

HV : High Voltage. HV type A provides AC voltage between 1kV and 50kV
and DC between 1.5kV and 75kV. HV type B provides AC voltage
above 50kV and DC above 75kV.

I : Index.

IMS : Information Management System.

INT : INTegrators. An electronics device which integrates the signal and is
equivalent to a first-order low-pass filter.

IP : Internet Protocol.

IT : Inner Tracker. LHCb subdetector built to provide precise
measurements of the momentum of charged particles.

JDBC : Java DataBase Connectivity.

L0 : Level-0. All the electronics modules which detect and generate signals
from the particules and process the signal, before the decision of the
L0 Trigger.

LAN : Local Area Network.

LCU : Local Control Unit. Control unit used in the VLT project to supervise a
group of modules

LED : Light Emitting Diode.

LHC : Large Hadron Collider. HEP experiment built at CERN and composed
of 4 detectors (ATLAS, ALICE, CMS and LHCb). It will be the fastest
collider pf the world.

LHCb : Large Hadron Collider beauty. One of the 4 experiments at LHC which
aims at studying B-mesons.

Glossary

 336

LV : Low Voltage. LV type A provides AC voltage between 50V and 500V
and DC between 120 kV and 750V. LV type B provides AC voltage
between 500V and 1kV and DC between 750V and 1.5kV.

MAC : Media Access Control.

MEP : Multi Event Packet. Protocol implemented by LHCb Online group for
which embeds several fragments of events in an IP packet.

NIC : Network Interface Card.

NFS : Network File System.

OCCI : Oracle C++ Call Interface.

OCI : Oracle Call Interface.

ODBC : Open DataBase Connectivity.

ODBMS : Object Database Management Systems.

ODMG : Object Data Management Group.

OID : Object IDentifier.

OPC : OLE for Process Control.

OSPF : Open Shortest Path First.

OSI : Open System Interconnected.

OT : Outer Tracker. LHCb subdetector built to provide precise
measurements of the momentum of charged particles.

Perl DBI : Perl DataBase Interface.

PHE : Physique des Hautes Energies. Domaine de la physique qui étudie les
interactions entre les particules et la désintégration des particules.

Pk : Primary key.

PL/SQL : Procedural Language/ Structured Query Language.

PMT : PhotoMultiplier Tube. Module used by the calorimeters to transform
the light from the photons into electronic signals (photoelectrons).

PS : PreShower. LHCb subdetector which is used by the L0 Trigger and
which improve the separation between electrons or photons and
hadrons.

PUS : Pile-Up System. LHCb subdetector built to identify and reject bunch
crossings where many p-p collisions occurred at the same time. It is
part of the L0 Trigger.

PVSS : ProzessVisualisierungs- und SteuerungsSystem. SCADA system from
ETM, used by the ECS to monitor and configure the LHCb
experiment.

RAC : Real Application Cluster. Oracle features to set up a distributed system
of databases and which allows availability of the information.

RDBMS : Relational Database Management Systems.

RICH : Ring Imaging Cherenkov. LHCb detector built to allow charged
pion/kaon separation.

RIP : Routing Information Protocol.

RM : Relational Model.

Glossary

 337

SCADA : Supervisory Control And Data Acquisition. A central system used to
supervise a site or a process such as chemical, electrical processes
which can execute logical processes without the master computer.

SFC : SubFarm Controller. In the old design of the DAQ system (before the
1MHZ readout), PC used to build and send the events to the farm
nodes for HLT processing.

SMI : State Management Interface. A tool for developing control systems
based on the concept of Finite State Machines (FSM).

SPD : Scintillator Pad Detector. LHCb subdetector designed to distinguish
electrons and photons for the LHCb L0 trigger.

SQL : Structured Language Query.

ST : Silicon Tracker. LHCb detector which consists of the IT and the TT.

TGC : Thin Gas Chambers. Used by the MUON trigger system in the forward
region of the ATLAS experiment.

TT : Trigger Tracker. LHCb subdetector built to provide precise
measurements of the momentum of charged particles.

TTCtx : Timing Trigger and Control transmitter. Fan-outs or passive switch
used to split the signal.

TTCoc : Timing Trigger and Control optical coupler. Optical fan-outs or
passive switch used to split the signal.

TTCrx : Timing Trigger and Control receiver. Chips located on the boards to
receive the clock.

TFC : Timing Fast Control. LHCb system part of the Online which
distributes the clock and forwards the decision of the L0 Trigger.

U : Unique.

VELO : VErtex Locator. LHCb subdetector built to determine the position of
the collision and the secondary vertices that characterize the events that
could display CP violation.

VLT : Very Large Telescope.

XML : Extensible Markup Language.

XSLT : Extensible Stylesheet Language Transformation.

Glossary

