Experiment Control System

SCADA and Framework demo

Clara Gaspar,
November 2000
Generic Architecture

To Devices (HW or SW)

Control Units
- T.S.
- LHC
- GAS

Device Units
- Dev1
- Dev2
- Dev3
- DevN

SubSys Units
- SubSys1
- SubSys2
- SubSysN

ECS

Commands

Status & Alarms

DetDcs1
- DetDcm1
- DetDcmN

DAQ
- DetDaq1
- DetDaqN

Clara Gaspar, November 2000
HW Architecture

- Storage
- Configuration DB, Archives, Logfiles, etc.
- Other systems (LHC, Safety, ...)
- Controller/PLC
- FieldBus
- Experimental equipment
- WAN
- LAN
- Technologies:
 - Supervision
 - Process Management
 - Field Management
- SCADA
- OPC
- Communication Protocols
- PLC
- Field buses
- Sensors/devices

SCADA = supervisory control and data acquisition
OPC = OLE for process control
PLC = Programmable logic controller
Field buses = CAN, Profinet, WorldFip, ...
The Control Framework

- Will provide guidelines and tools for the implementation of all components in the tree.

- Based on:
 - A Commercial SCADA Tool - PVSSII
 - +Additions (home made or commercial)
 - Finite State Machine Toolkit
 - Specific drivers
 - etc.
Control Framework

Tools for the implementation of Device Units

- PVSSII Tools for:
 - Device Description
 - Several Access Protocols
 - Alarm Generation Configuration
 - User Interface Editor
 - and also Alarm Display, Archiving, Logging, etc.

- Additional FSM tool for:
 - Device Behaviour and Integration in Hierarchy

Clara Gaspar, November 2000
PVSSII Overview

- User Interface Layer
 - UIM

- Processing Layer
 - Ctrl
 - API

- Communication and Memory Layer
 - DB
 - DM
 - EV

- Driver Layer
 - D

Clara Gaspar, November 2000
Data Point Concept

Clara Gaspar, November 2000
Data Point Modelling

- Define type of Data Point

- Create Data Points

- Set Configuration Parameters

Clara Gaspar, November 2000
DP Configuration

- default_value
- peripheral address
- message conversion
- command conversion
- smoothing
- PVSS value range
- user value range
- alert class
- alert handling
- DP function
- archiving
- authorization
- delete config
Graphic Objects

valve

$\text{valve}.\text{settings.opening}$

$\text{valve}.\text{readings.end_position}$

$\text{valve}.\text{readings.malfunction}$

$\text{valve}=V1$

$\text{valve}=V2$

$\text{valve}=V3$

Clara Gaspar, November 2000
Example:

- The Control and Monitoring of a Power Supply
 - Define the Structure of a Crate
 - Define the Access Protocol
 - Define Alarm Generation
 - Create a panel to visualize and act on the crate
 - Define the interface to the above hierarchy:
 - States it can have
 - Actions it can receive

- Already done: CAEN SY127 HV Power Supply
Controls Framework

Will Contain:

- Predefined (Configurable) Components, like:
 - Power supplies (CAEN, Lecroy, ...)
 - Electronics ECS Interfaces: CC-PC, SPAC, CCU?
 - Any other common items

- User Defined Components:
 (in order of integration facility)
 - Devices Accessible via OPC (Industry Standard)
 - CERN recommended Fieldbus nodes: CAN, Profibus
 - Other Devices

Clara Gaspar, November 2000
Tools for Developing the Control Units:

- PVSSII Tools for:
 - Control Unit Description
 - Its Components: Devices and/or other Control Units
 - Alarm Handling
 - Filtering, Summarising, Displaying, Masking, etc
 - User Interface Generation
 - and also Alarm Display, Archiving, Logging, etc.
Tools for Developing the Control Units:

- Additional FSM tool for:
 - CU Behaviour and Integration in Hierarchy
 - Model the dependencies between components
 - Automate Operations & Error Recovery
 - CU Partitioning Rules
Partitioning

Clara Gaspar, November 2000
Control Unit Operation Modes

Normal Operation
- Hierarchical control only

Partitioned
- No Hierarchical control
- Control from a “local” U.I.
Demo Architecture-DCS

DCS

Tracker

Muon

HV

GAS

HV

GAS

Clara Gaspar, November 2000
Demo Architecture-Run Control

Clara Gaspar, November 2000
Demo Architecture - Safety

Clara Gaspar, November 2000
Control Framework

- Other Items that will be integrated:
 - Experiment Infrastructure
 - Rack and Crate Control
 - GAS Systems (GAS WG)
 - Cooling (?)
 - CERN Infrastructure (Data Interchange WG)
 - Technical Services
 - LHC machine
 - LHCb Magnet(?)

Clara Gaspar, November 2000
The SCADA Contract has been signed

- It can be downloaded and used by all members of LHC experiments either at CERN or in their own laboratories.

PVSSII courses are available

- Please contact me
Conclusions

- The best way to achieve an homogeneous and maintainable control system (and to save manpower) is:
 - To do the maximum in common
 - The Controls Framework is being developed and will be used by the 4 LHC experiments (Joint Controls Project)
 - New “Devices” should be developed in a re-usable way and included in the Framework
 - To Standardize on HW choices as much as possible
 - So that common SW can be used

- Please contact us for HW choices
 (of potentially common items)
 - like: power supplies, Temperature Sensors, etc

Clara Gaspar, November 2000